
Bioinformatics

Slides from companion site of Neil C. Jones, Pavel A. Pevzner, An

introduction to Bioinformatics Algorithms, MIT Press

http://bix.ucsd.edu/bioalgorithms/slides.php) and Dan Gusfield

Algorithms on Strings, Trees and Sequences, Cambridge University

Press,

Bioinformatics

Applications Αho-Corasick(1)

Exact pattern matching with do not cares (‘*’) character

Let T be a string with n characters and P be a string with k-1 do not care ('*') characters

of total length m.

Algorithm

0. Let C be an array of integers of length n initialized in zeros.

1. Let P = {p1, p2,...,pk) be the (multi-)set of substrings of P that do not contain

wildcard characters. Let l1, 12, . . . , lk be the initial positions in P of each of these

substrings (l1=1).

2. Using the Aho-Corasick algorithm find for each string Pi in P, all the initial positions

of Pi in T. For each position j of Pi in T, increase the number in cell j - li + 1 of C by

one.

3. Scan array C to find cells with value k. There is an appearance of P in T starting

from position p if and only if C (p) = k.

Applications Αho-Corasick(2)

Two dimensional Pattern Matching

Let T be a two-dimensional text with n=n1 x n2 cells and P a two-dimensional pattern

of m=m1 x m2 cells. We want to identify all occurrences of P in T.

The method is divided into two phases.

In the first phase, look for all occurrences of each of the rows of P among the rows of

T. To do this, add an end-of-line marker (a character that does not exist in the alphabet)

to each line of T, and concatenate these lines into a text string of T' length O(n).

Then, treating each line of P as a separate pattern, use the Aho-Corasick algorithm to

search for all occurrences in T' of any row of P.

Therefore, the first phase identifies all occurrences of P and takes time O(n + m).

Applications Αho-Corasick(3)

Whenever an occurrence of line i of P starting with position (p, q) of T is detected,

write the number i in position (p, q) of another array M with the same dimensions as T.

Because each line of P is considered distinct, and because P is rectangular, at most one

number will be written in any cell of M.

in the second phase scan each column of m looking for an occurrence of the string 1.2 .

. . . m1 in consecutive single-column cells.

This gives an O(n+m) solution if a linear time pattern matching algorithm is used in

each column, regardless of the alphabet (Z-algorithm, Knuth Morris Pratt)

Now suppose that the rows of P are not all discrete. It is enough to identify all identical

rows of P and give them a common label.

Techniques for Analysis and Comparison of
Biological Data Sequences

◼ Suffix Tree

◼ Generalized Suffix Tree

◼ Applications in Molecular Biology Problems

Definitions

◼ String: x=x[1]x[2]…..x[n], x[i]Σ & |x|=n

x= acgttaaaca, |x|=10 & Σ={a,c,g,t}

◼ Empty string: ε

◼ Substring w: x=uwv

◼ Prefix w: x=wu

◼ Suffix w: x=uw

◼ Each string S, length |S|=m, has m non-empty suffixes
which are the following: S[1…m], S[2…m], …. S[m-1…m]
και S[m].

◼ Example "sequence" : sequence, equence, quence, uence,
ence, nce, ce, e.

Suffix Tree

Definition: "stores all possible suffixes of a string".

p= xabxac

1

23
56

4

x a b x a c

c
 a

x

 b c
u

c

wa b x a c

c

Dan Gusfield Algorithms on Strings, Trees and Sequences, Cambridge

University Press,

Definition A suffix tree T for a string of n characters is a rooted directed tree with

exactly n leaves numbered from 1 to n. Each inner node, except the root, has at

least two children, and each edge is marked with a nonempty substring. It is not

possible for a node to have two edges starting from the same character. The key

feature of the suffix tree is that for any leaf i, the concatenation of edge-labels in

the path from root to leaf i is equal to the suffix of the string starting at position i.

Suffix Tree

Definition: The suffix tree of a string S[1... n] is a
compact trie that contains as keys , all suffixes
S[i…n], 1≤i≤n.

$
c

$a

b

c

$

b

c

$a

b

c

$

a

b

c

$

bcabc$

Trie

$

c

$
abc$

bc

abc

abc$

Compressed trie

(3,6)

41

3

2 5

6

Trie Definition:

Let universe U= Σ0 …  Σl for alphabet Σ and l>0.

σ1 σ2 …
σκ x1

x2

x1

Trie (uncompressed)

Trie - example

Time ins/del/search :

Ο(l)

Space:

Ο(nlk)

S={ 102, 120, 121, 212, 211, 120}, Σ={0,1,2}

Compressed Trie

Space:Ο(nlk) →Ο(nk)=O(n)

Compressed Trie - example

Preprocessing time to build Suffix tree

❑ Weiner’s algorithm [FOCS, 1973]

 Knuth ”The algorithm of 1973”

❑ McCreight’s algorithm [JACM, 1976]

Linear time and space

❑ Ukkonnen's algorithm [Algorithmica, 1995]

Linear time and less space

◼ Farach’s algorithm [FOCS 1997],

gave the first linear time alphabet indepedent

Implementation

(https://en.wikipedia.org/wiki/Suffix_tree)

https://en.wikipedia.org/wiki/Suffix_tree

	Διαφάνεια 1: Bioinformatics
	Διαφάνεια 1: Bioinformatics
	Διαφάνεια 2: Applications Αho-Corasick(1)
	Διαφάνεια 3: Applications Αho-Corasick(2)
	Διαφάνεια 4: Applications Αho-Corasick(3)
	Διαφάνεια 5: Techniques for Analysis and Comparison of Biological Data Sequences
	Διαφάνεια 6: Definitions
	Διαφάνεια 7: Suffix Tree
	Διαφάνεια 8
	Διαφάνεια 9: Suffix Tree
	Διαφάνεια 10
	Διαφάνεια 11: Trie - example
	Διαφάνεια 12: Compressed Trie
	Διαφάνεια 13: Compressed Trie - example
	Διαφάνεια 14: Preprocessing time to build Suffix tree
	Διαφάνεια 15: Implementation (https://en.wikipedia.org/wiki/Suffix_tree)

