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Evolutionary Trees

How are these trees built from DNA sequences?
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Evolutionary Trees

How are these trees built from DNA sequences?

• leaves represent existing species

• internal vertices represent ancestors

• root represents the oldest evolutionary 

ancestor
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Rooted and Unrooted Trees

In the unrooted tree the position of 

the root (“oldest ancestor”) is 

unknown. Otherwise, they are like 

rooted trees



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Distances in Trees

• Edges may have weights reflecting:

• Number of mutations on evolutionary path from 

one species to another

• Time estimate for evolution of one species into 

another

• In a tree T, we often compute 

  dij(T) - the length of a path between leaves i and j 

        dij(T) – tree distance between i and j 
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Distance in Trees: an Exampe

       d1,4 = 12 + 13 + 14 + 17 + 12 = 68

i

j
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Distance Matrix

• Given n species, we can compute the n x n 

distance matrix Dij

• Dij may be defined as the edit distance between 

a gene in species i and species j, where the 

gene of interest is sequenced for all n species.

           Dij – edit distance between i and j 
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Edit Distance vs. Tree Distance

• Given n species, we can compute the n x n 

distance matrix Dij

• Dij may be defined as the edit distance between 

a gene in species i and species j, where the 

gene of interest is sequenced for all n species.

           Dij – edit distance between i and j 

• Note the difference with 

       dij(T) – tree distance between i and j 
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Fitting Distance Matrix

• Given n species, we can compute the n x n 

distance matrix Dij

• Evolution of these genes is described by a 

tree that we don’t know.

• We need an algorithm to construct a tree that 

best fits the distance matrix Dij
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Fitting Distance Matrix

• Fitting means Dij = dij(T)

Lengths of path in an (unknown) tree T

Edit distance between species (known)
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Reconstructing a 3 Leaved Tree

• Tree reconstruction for any 3x3 matrix is 
straightforward

• We have 3 leaves i, j, k and a center vertex c

Observe:

dic + djc = Dij

dic + dkc = Dik

djc + dkc = Djk
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Reconstructing a 3 Leaved Tree (cont’d)

 dic + djc = Dij

      +  dic + dkc = Dik

        2dic + djc + dkc = Dij + Dik

2dic +    Djk       = Dij + Dik

 dic = (Dij + Dik – Djk)/2
Similarly,

  djc = (Dij + Djk – Dik)/2

  dkc = (Dki + Dkj – Dij)/2
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Trees with > 3 Leaves

• An tree with n leaves has 2n-3 edges

• This means fitting a given tree to a distance 

matrix D requires solving a system of “n 

choose 2” equations with  2n-3 variables

• This is not always possible to solve for n > 3
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Additive Distance Matrices

Matrix D is 

ADDITIVE if there 

exists a tree T with 

dij(T) = Dij

NON-ADDITIVE 

otherwise
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Distance Based Phylogeny Problem

• Goal: Reconstruct an evolutionary tree from a 

distance matrix

• Input: n x n distance matrix Dij

• Output: weighted tree T with n leaves fitting D

• If D is additive, this problem has a solution 

and there is a simple algorithm to solve it
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Using Neighboring Leaves to Construct the Tree

• Find neighboring leaves i and j with parent k

• Remove the rows and columns of i and j

• Add a new row and column corresponding to k, 
where the distance from k to any other leaf m can 
be computed as:

Dkm = (Dim + Djm – Dij)/2

Compress i and j into 

k, iterate algorithm for 

rest of tree



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Finding Neighboring Leaves

• To find neighboring leaves we simply select a 

pair of closest leaves. 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Finding Neighboring Leaves

• To find neighboring leaves we simply select a 

pair of closest leaves. 

                         WRONG
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Finding Neighboring Leaves

• Closest leaves aren’t necessarily neighbors

• i and j are neighbors, but (dij = 13) > (djk = 12)

•  Finding a pair of neighboring leaves is 

   a nontrivial problem!
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Neighbor Joining Algorithm

• In 1987 Naruya Saitou and Masatoshi Nei 
developed a neighbor joining algorithm for 
phylogenetic tree reconstruction

• Finds a pair of leaves that are close to each 
other but far from other leaves: implicitly finds a 
pair of neighboring leaves

• Advantages: works well for additive and other non-
additive matrices, it does not have the flawed 
molecular clock assumption
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Degenerate Triples

• A degenerate triple is a set of three distinct 

elements 1≤i,j,k≤n where Dij + Djk = Dik

• Element j in a degenerate triple i,j,k lies on the 

evolutionary path from i to k (or  is  attached to  

this path by an edge of length 0).
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Looking for Degenerate Triples

• If distance matrix D has a degenerate triple 
i,j,k then j can be “removed” from D thus 
reducing the        size of the problem.

• If distance matrix D does not have a 
degenerate triple i,j,k, one can “create” a 
degenerative triple in D by shortening all 
hanging edges (in the tree). 
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Shortening Hanging Edges to 

Produce Degenerate Triples
• Shorten all “hanging” edges (edges that 

connect leaves) until a degenerate triple is 

found
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Finding Degenerate Triples

• If there is no degenerate triple, all hanging edges 

are reduced by the same amount δ, so that all pair-

wise distances in the matrix are reduced by 2δ.

• Eventually this process collapses one of the leaves 

(when δ = length of shortest hanging edge), forming 

a degenerate triple i,j,k and reducing the size of the 

distance matrix D.

• The attachment point for j can be recovered in the 

reverse transformations by saving Dij for each 

collapsed leaf.
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Reconstructing Trees for Additive Distance Matrices
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AdditivePhylogeny Algorithm

1. AdditivePhylogeny(D)

2.    if D is a 2 x 2 matrix

3.       T = tree of a single edge of length D1,2

4.       return T

5.    if D is non-degenerate

6.       δ = trimming parameter of matrix D

7.       for all 1 ≤ i ≠ j ≤ n

8.          Dij = Dij - 2δ

9.    else

10.      δ = 0
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AdditivePhylogeny (cont’d)

1.    Find a triple i, j, k in D such that Dij + Djk = Dik

2.    x = Dij

3.    Remove jth row and jth column from D
4.    T = AdditivePhylogeny(D)
5.    Add a new vertex v  to T at distance x from i to k
6.    Add j back to T  by creating an edge (v,j) of length 0
7.    for every leaf l in T
8.       if distance from l to v in the tree ≠ Dl,j

9.          output “matrix is not additive”
10.          return
11.    Extend all “hanging” edges by length δ
12.    return T
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The Four Point Condition

• AdditivePhylogeny provides a way to check if 

distance matrix D is additive

• An even more efficient additivity check is 

the “four-point condition”

• Let 1 ≤ i,j,k,l ≤ n be four distinct leaves in a 

tree
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The Four Point Condition (cont’d)

Compute: 1. Dij + Dkl, 2. Dik + Djl, 3. Dil + Djk

1

2 3

2 and 3 represent 

the same 

number: the 

length of all 

edges + the 

middle edge (it is 

counted twice)

1 represents a 

smaller 

number: the 

length of all 

edges – the 

middle edge
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The Four Point Condition: Theorem

• The four point condition for  the quartet i,j,k,l 

is satisfied if two of these sums are the same, 

with the third sum smaller than these first two

• Theorem : An n x n matrix D is additive if and 

only if the four point condition holds for every 

quartet 1 ≤ i,j,k,l ≤ n
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Least Squares Distance Phylogeny 

Problem

• If the distance matrix D is NOT additive, then we look for a 
tree T that approximates D the best:

               Squared Error :   ∑i,j (dij(T) – Dij)
2

• Squared Error is a measure of the quality of the fit between 
distance matrix and the tree: we want to minimize it.

• Least Squares Distance Phylogeny Problem: finding the 
best approximation tree T for a non-additive matrix D (NP-
hard).
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UPGMA: Unweighted Pair Group 

Method with Arithmetic Mean

• UPGMA is a clustering algorithm that:

• computes the distance between clusters 

using average pairwise distance

• assigns a height to every vertex in the tree, 

effectively assuming the presence of a 

molecular clock and dating every vertex
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UPGMA’s Weakness

• The algorithm produces an ultrametric tree : 

the distance from the root to any leaf is the 

same

• UPGMA assumes a constant molecular 

clock: all species represented by the 

leaves in the tree are assumed to 

accumulate mutations (and thus evolve) 

at the same rate.  This is a major pitfalls 

of UPGMA.
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UPGMA’s Weakness: Example

2

3

4

1
1 4 32

Correct tree
UPGMA
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Clustering in UPGMA

Given two disjoint clusters Ci, Cj of sequences,

                           1

           dij = ––––––––– {p Ci, q Cj}dpq

               |Ci|  |Cj|

Note that if Ck = Ci  Cj, then distance to 
another cluster Cl is:

                        dil |Ci| + djl |Cj|

                dkl = ––––––––––––––

                         |Ci| + |Cj|
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UPGMA Algorithm

Initialization:

 Assign each xi to its own cluster Ci

 Define one leaf per sequence, each at height 0

Iteration:

 Find two clusters Ci and Cj such that dij is min

 Let Ck = Ci  Cj

 Add a vertex connecting Ci, Cj and place it at height dij /2

 Delete Ci and Cj

Termination:

 When a single cluster remains
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UPGMA Algorithm (cont’d)

1 4

3
2 5

1 4 2 3 5
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Alignment Matrix vs. Distance Matrix

 Sequence a gene of length m 

nucleotides in n species to generate an…

     n x m alignment matrix

n x n distance 

matrix

CANNOT be 

transformed back 

into alignment 

matrix because 

information was 

lost on the forward 

transformation

Transform 

into…
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Character-Based Tree Reconstruction 

• Better technique:

• Character-based reconstruction algorithms 

use the n x m alignment matrix

   (n = # species, m = #characters) 

   directly instead of using distance matrix. 

• GOAL: determine what character strings at 

internal nodes would best explain the character 

strings for the n observed species
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Character-Based Tree Reconstruction 

(cont’d)

• Characters may be nucleotides, where A, G, 

C, T are states of this character.  Other 

characters may be the # of eyes or legs or 

the shape of a beak or a fin. 

• By setting the length of an edge in the tree to 

the Hamming distance, we may define the 

parsimony score of the tree as the sum of 

the lengths (weights) of the edges
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Parsimony Approach to Evolutionary 

Tree Reconstruction

• Applies Occam’s razor principle to identify the 

simplest explanation for the data

• Assumes observed character differences 

resulted from the fewest possible mutations

• Seeks the tree that yields lowest possible 

parsimony score - sum of cost of all 

mutations found in the tree
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Parsimony and Tree Reconstruction 
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Character-Based Tree Reconstruction 

(cont’d)
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Small Parsimony Problem

• Input: Tree T with each leaf labeled by an m-
character string.

• Output: Labeling of internal vertices of the 
tree T minimizing the parsimony score.

• We can assume that every leaf is labeled by 
a single character, because the characters in 
the string are independent.
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Weighted Small Parsimony Problem

• A more general version of Small Parsimony 
Problem

• Input includes a k * k scoring matrix describing 
the cost of transformation of each of k states 
into another one 

• For Small Parsimony problem, the scoring 
matrix is based on Hamming distance 

      dH(v, w) = 0 if v=w 

      dH(v, w) = 1 otherwise
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Scoring Matrices

A T G C

A 0 1 1 1

T 1 0 1 1

G 1 1 0 1

C 1 1 1 0

A T G C

A 0 3 4 9

T 3 0 2 4

G 4 2 0 4

C 9 4 4 0

Small Parsimony Problem Weighted Parsimony Problem
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Unweighted vs. Weighted

Small Parsimony Scoring Matrix:

A T G C

A 0 1 1 1

T 1 0 1 1

G 1 1 0 1

C 1 1 1 0

Small Parsimony Score:5
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Unweighted vs. Weighted

Weighted Parsimony Scoring Matrix:

A T G C

A 0 3 4 9

T 3 0 2 4

G 4 2 0 4

C 9 4 4 0

Weighted Parsimony Score: 22
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Weighted Small Parsimony 

Problem: Formulation
• Input: Tree T with each leaf labeled by 

elements of a k-letter alphabet and a k x k 

scoring matrix (ij)

• Output: Labeling of internal vertices of the 

tree T minimizing the weighted parsimony 

score
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Sankoff’s Algorithm

• Check children’s every 

vertex and determine 

the minimum between 

them

• An example
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Sankoff Algorithm: Dynamic 

Programming

• Calculate and keep track of a score for every 

possible label at each vertex

• st(v) = minimum parsimony score of the subtree 

rooted at vertex v if v has character t

• The score at each vertex is based on scores 

of its children:

• st(parent) = mini {si( left child )   + i, t} + 

                      minj   {sj( right child ) + j, t}
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Sankoff Algorithm (cont.)

• Begin at leaves:

• If leaf has the character in question, score is 0

• Else, score is 
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Sankoff Algorithm (cont.)

st(v) = mini {si(u) + i, t} + 

minj{sj(w) + j, t}

sA(v) = mini{si(u) + i, A} 

+ minj{sj(w) + j, A}

si(u

)
i, A

su

m

A 0 0 0

T  3 

G  4 

C  9 

si(u

)
i, A

su

m

A 0 0 0

T  3 

G  4 

C  9 

sA(v) = 0

si(u

)
i, A

su

m

A

T

G

C
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Sankoff Algorithm (cont.)

st(v) = mini {si(u) + i, t} + 

minj{sj(w) + j, t}

sA(v) = mini{si(u) + i, A} 

+ minj{sj(w) + j, A}

sj(u

)
j, A

su

m

A

T

G

C

sj(u

)
j, A

su

m

A  0 

T  3 

G  4 

C 0 9 9

sj(u

)
j, A

su

m

A  0 

T  3 

G  4 

C 0 9 9

+ 9 = 9

sA(v) = 0
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Sankoff Algorithm (cont.)

st(v) = mini {si(u) + i, t} + 

minj{sj(w) + j, t}

Repeat for T, G, and C
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Sankoff Algorithm (cont.)

Repeat for right subtree
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Sankoff Algorithm (cont.)

Repeat for root
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Sankoff Algorithm (cont.)

Smallest score at root is minimum weighted 

parsimony score In this case, 9 – 

so label with T
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Sankoff Algorithm: Traveling down 

the Tree

• The scores at the root vertex have been 

computed by going up the tree 

• After the scores at root vertex are computed 

the Sankoff algorithm moves down the tree 

and assign each vertex with optimal 

character.
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Sankoff Algorithm (cont.)

9 is derived from 7 + 2

So left child is T,

And right child is T
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Sankoff Algorithm (cont.)

And the tree is thus labeled…
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Fitch’s Algorithm

• Solves Small Parsimony problem

• Dynamic programming in essence

• Assigns a set of letter to every vertex in the 

tree.

• If the two children’s sets of character overlap, 

it’s the common set of them

• If not, it’s the combined set of them.
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Fitch’s Algorithm (cont’d)

a

a

a

a

a

a

c

c

{t,a}

c

t

t

t

{t,a}

a

{a,c}

{a,c}
a

a

a

aa

tc

An example:
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Fitch Algorithm

1) Assign a set of possible letters to every 

vertex, traversing the tree from leaves to root

• Each node’s set is the combination of its 

children’s sets (leaves contain their label)

• E.g. if the node we are looking at has a left child 

labeled {A, C} and a right child labeled {A, T}, the 

node will be given the set {A, C, T}
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Fitch Algorithm (cont.)

2) Assign labels to each vertex, traversing the 

tree from root to leaves

• Assign root arbitrarily from its set of letters

• For all other vertices, if its parent’s label is in 

its set of letters, assign it its parent’s label

• Else, choose an arbitrary letter from its set as 

its label
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Fitch Algorithm (cont.)



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Fitch vs. Sankoff

• Both have an O(nk) runtime

• Are they actually different?

• Let’s compare …
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Fitch

As seen previously:
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Comparison of Fitch and Sankoff

• As seen earlier, the scoring matrix for the Fitch 
algorithm is merely:

• So let’s do the same problem using Sankoff 
algorithm and this scoring matrix

A T G C

A 0 1 1 1

T 1 0 1 1

G 1 1 0 1

C 1 1 1 0
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Sankoff
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Sankoff vs. Fitch

• The Sankoff algorithm gives the same set of 
optimal labels as the Fitch algorithm

• For Sankoff algorithm, character t is optimal for 
vertex v if st(v) = min1<i<ksi(v)
• Denote the set of optimal letters at vertex  v as S(v)

• If S(left child) and S(right child) overlap, S(parent) is the 
intersection

• Else it’s the union of S(left child) and S(right child) 

• This is also the Fitch recurrence

• The two algorithms are identical
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Large Parsimony Problem

• Input: An n x m matrix M describing n 
species, each represented by an m-character 
string

• Output: A tree T with n leaves labeled by the 
n rows of matrix M, and a labeling of the 
internal vertices such that the parsimony 
score is minimized over all possible trees and 
all possible labelings of internal vertices
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Large Parsimony Problem (cont.)

• Possible search space is huge, especially as 

n increases

• (2n – 3)!! possible rooted trees

• (2n – 5)!! possible unrooted trees

• Problem is NP-complete

• Exhaustive search only possible w/ small n(< 10)

• Hence, branch and bound or heuristics used
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Nearest Neighbor Interchange
A Greedy Algorithm

• A Branch Swapping algorithm

• Only evaluates a subset of all possible trees

• Defines a neighbor of a tree as one 

reachable by a nearest neighbor interchange

• A rearrangement of the four subtrees defined by 

one internal edge

• Only three different rearrangements per edge
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Nearest Neighbor Interchange 

(cont.)
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Nearest Neighbor Interchange 

(cont.)
• Start with an arbitrary tree and check its 

neighbors

• Move to a neighbor if it provides the best 

improvement in parsimony score

• No way of knowing if the result is the most 

parsimonious tree

• Could be stuck in local optimum
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Nearest Neighbor Interchange
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Subtree Pruning and Regrafting
Another Branch Swapping Algorithm

http://artedi.ebc.uu.se/course/BioInfo-10p-2001/Phylogeny/Phylogeny-TreeSearch/SPR.gif
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Tree Bisection and Reconnection 
Another Branch Swapping Algorithm

Most extensive 

swapping routine
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Homoplasy

• But what if this was the real tree?
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Sources

• http://www.math.tau.ac.il/~rshamir/ge/02/scribes/lec01.pdf

• http://bioinformatics.oupjournals.org/cgi/screenpdf/20/3/340.pdf 

• http://www.absoluteastronomy.com/encyclopedia/M/Mi/Minimum_span
ning_tree.htm

• Serafim Batzoglou (UPGMA slides) 
http://www.stanford.edu/class/cs262/Slides

• Watkins, W.S., Rogers A.R., Ostler C.T., Wooding, S., Bamshad M. J., 
Brassington A.E., Carroll M.L., Nguyen S.V., Walker J.A., Prasas, R., 
Reddy P.G., Das P.K., Batzer M.A., Jorde, L.B.: Genetic Variation 
Among World Populations: Inferences From 100 Alu Insertion 
Polymorphisms

http://www.math.tau.ac.il/~rshamir/ge/02/scribes/lec01.pdf
http://bioinformatics.oupjournals.org/cgi/screenpdf/20/3/340.pdf
http://www.absoluteastronomy.com/encyclopedia/M/Mi/Minimum_spanning_tree.htm
http://www.absoluteastronomy.com/encyclopedia/M/Mi/Minimum_spanning_tree.htm
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