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CG-Islands

• Given 4 nucleotides: probability of occurrence 

is ~ 1/4.  Thus, probability of occurrence of a 

dinucleotide is ~ 1/16.

• However, the frequencies of dinucleotides in 

DNA sequences vary widely.

• In particular, CG is typically underepresented 

(frequency of CG is typically < 1/16)
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Why CG-Islands?

• CG is the least frequent dinucleotide because 

C in CG is easily methylated and has the 

tendency to mutate into T afterwards

• However, the methylation is suppressed 

around genes in a genome.  So, CG appears 

at relatively high frequency within these CG

islands

• So, finding the CG islands in a genome is an 

important problem
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CG Islands and the “Fair Bet Casino”

• The CG islands problem can be modeled after 

a problem named “The Fair Bet Casino”

• The game is to flip coins, which results in only 

two possible outcomes: Head or Tail.

• The Fair coin will give Heads and Tails with 

same probability ½.

• The Biased coin will give Heads with prob. ¾.
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The “Fair Bet Casino” (cont’d)

• Thus, we define the probabilities:

• P(H|F) = P(T|F) = ½

• P(H|B) = ¾, P(T|B) = ¼

• The crooked dealer chages between Fair 

and Biased coins with probability  10%
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The Fair Bet Casino Problem

• Input: A sequence x = x1x2x3…xn of coin 

tosses made by two possible coins (F or B).

• Output: A sequence π = π1 π2 π3… πn, with 

each πi being either F or B indicating that xi

is the result of tossing the Fair or Biased 

coin respectively.
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Problem…

Fair Bet Casino 

Problem

Any observed 

outcome of coin 

tosses could 

have been 

generated by any 

sequence of 

states!

Need to incorporate a 

way to grade different 

sequences differently.

Decoding Problem
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P(x|fair coin) vs. P(x|biased coin)

• Suppose first that dealer never changes 

coins. Some definitions:

•  P(x|fair coin): prob. of the dealer using 

      the F coin and generating the outcome x.

• P(x|biased coin):  prob. of the dealer using    

the B coin and generating outcome x.
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P(x|fair coin) vs. P(x|biased coin)

• P(x|fair coin)=P(x1…xn|fair coin)

             Πi=1,n p (xi|fair coin)= (1/2)n

• P(x|biased coin)= P(x1…xn|biased coin)=

Πi=1,n p (xi|biased coin)=(3/4)k(1/4)n-k= 3k/4n

• k - the number of Heads in x.
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P(x|fair coin) vs. P(x|biased coin)

• P(x|fair coin) = P(x|biased coin)

•               1/2n = 3k/4n 

•                  2n = 3k

•                   n = k log23 

• when          k = n / log23 (k ~ 0.67n)
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Log-odds Ratio

• We define log-odds ratio as follows:

 log2(P(x|fair coin) / P(x|biased coin)) 

    = Σk
i=1 log2(p

+(xi) / p
-(xi)) 

                          = n – k log23
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Computing Log-odds Ratio in Sliding Windows

x1x2x3x4x5x6x7x8…xn

Consider a sliding window of the outcome 

sequence.  Find the log-odds for this short window.

Log-odds value

0

Fair coin most likely 
used

Biased coin most likely 
used

Disadvantages:

- the length of CG-island is not known in advance

- different windows may classify the same position differently
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Hidden Markov Model (HMM)

• Can be viewed as an abstract machine with k hidden 

states that emits symbols from an alphabet Σ.

• Each state has its own probability distribution, and the 

machine switches between states according to this 

probability distribution.

• While in a certain state, the machine makes 2 

decisions:

• What state should I move to next?

• What symbol - from the alphabet Σ - should I emit?
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Why “Hidden”?

• Observers can see the emitted symbols of an 

HMM but have no ability to know which state 

the HMM is currently in.

• Thus, the goal is to infer the most likely 

hidden states of an HMM based on the given 

sequence of emitted symbols.
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HMM Parameters

Σ: set of emission characters.

  Ex.: Σ = {H, T} for coin tossing

             Σ = {1, 2, 3, 4, 5, 6} for dice tossing

Q: set of hidden states, each emitting symbols 

from Σ.

            Q={F,B} for coin tossing
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HMM Parameters (cont’d)

A = (akl): a |Q| x |Q| matrix of probability of 

changing from state k to state l.

               aFF = 0.9     aFB = 0.1

             aBF = 0.1     aBB = 0.9

E = (ek(b)): a |Q| x |Σ| matrix of probability of 

emitting symbol b while being in state k.

               eF(0) = ½     eF(1) = ½ 

             eB(0) = ¼     eB(1) = ¾ 
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HMM for Fair Bet Casino

• The Fair Bet Casino in HMM terms:

 Σ = {0, 1} (0 for Tails and 1 Heads)

 Q = {F,B} – F for Fair & B for Biased coin.

• Transition Probabilities A *** Emission Probabilities E

Fair Biased

Fair aFF = 0.9 aFB = 0.1

Biased aBF = 0.1 aBB = 0.9

Tails(0) Heads(1)

Fair eF(0) = ½ eF(1) = ½

Biased eB(0) = 

¼

eB(1) = 

¾
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HMM for Fair Bet Casino (cont’d)

HMM model for the Fair Bet Casino Problem
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Hidden Paths

• A path π = π1… πn in the HMM is defined as a 
sequence of states.

• Consider path π = FFFBBBBBFFF and sequence x = 
01011101001

x                        0     1     0    1     1      1    0      1    0     0     1

π      =        F   F   F   B   B   B   B   B   F   F   F

P(xi|πi)               ½   ½    ½    ¾   ¾    ¾    ¼   ¾    ½   ½   ½ 

P(πi-1 → πi)     ½   9/10    
9/10      

1/10      
9/10      

9/10      
9/10     

9/10    
1/10     

9/10     
9/10 

Transition probability from state πi-1 to state πi

Probability that xi was emitted from state πi
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P(x|π) Calculation

• P(x|π): Probability that sequence x was 

generated by the path π:
                                  n 

 P(x|π) = P(π0→ π1) · Π P(xi| πi) · P(πi → πi+1)

                                  i=1

                                         

                    = a π0, π1 
·  Π e πi (xi) · a πi, πi+1
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P(x|π) Calculation

• P(x|π): Probability that sequence x was 

generated by the path π:
                                 n 

 P(x|π) = P(π0→ π1) · Π P(xi| πi) · P(πi → πi+1)

                                  i=1

                                         

                    = a π0, π1
 · Π e πi (xi) · a πi, πi+1

 

                    =             Π e πi+1 (xi+1) ·  a πi, πi+1
 

                                          if we count from i=0 instead of i=1 
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Decoding Problem

• Goal: Find an optimal hidden path of states 

given observations.

• Input: Sequence of observations x = x1…xn 

generated by an HMM M(Σ, Q, A, E)

• Output: A path that maximizes P(x|π) over all 

possible paths π.
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Building Manhattan for Decoding Problem

• Andrew Viterbi used the Manhattan grid 

model to solve the Decoding Problem.

• Every choice of π = π1… πn corresponds to a 

path in the graph.

• The only valid direction in the graph is 

eastward.

• This graph has |Q|2(n-1) edges.
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Edit Graph for Decoding Problem 
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Decoding Problem vs. Alignment Problem

Valid directions in the 

alignment problem.

Valid directions in the 

decoding problem.
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Decoding Problem as Finding a 

Longest Path in a DAG

• The Decoding Problem is reduced to finding 

a longest path in the directed acyclic graph 

(DAG) above.

• Notes: the length of the path is defined as 

the product of its edges’ weights, not the 

sum.
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Decoding Problem (cont’d)

• Every path in the graph has the probability 

P(x|π).

• The Viterbi algorithm finds the path that 

maximizes P(x|π) among all possible paths.

• The Viterbi algorithm runs in O(n|Q|2) time.
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Decoding Problem: weights of edges

w

The weight w is given by:

                    ???

(k, i) (l, i+1)
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Decoding Problem: weights of edges

w

The weight w is given by:

                      ??

(k, i) (l, i+1)

              n 

 P(x|π) = Π e πi+1 (xi+1) . a πi, πi+1
 

                         i=0
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Decoding Problem: weights of edges

w

The weight w is given by:

                       ?

(k, i) (l, i+1)

                         

       i-th term = e πi+1 (xi+1) . a πi, πi+1
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Decoding Problem: weights of edges

w

The weight  w=el(xi+1). akl

 

(k, i) (l, i+1)

                         
       i-th term = e πi (xi) . a πi, πi+1

 = el(xi+1). akl   for  πi =k, πi+1=l
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Decoding Problem and Dynamic Programming

sl,i+1 = maxk Є Q {sk,i · weight of edge between (k,i) and (l,i+1)}=

             maxk Є Q {sk,i ·                  akl · el (xi+1)                            }=

                        el (xi+1) · maxk Є Q {sk,i · akl}
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Decoding Problem (cont’d)

• Initialization:

• sbegin,0 = 1

• sk,0 = 0 for k ≠ begin.

• Let π* be the optimal path. Then,

  

  P(x|π*) = maxk Є Q {sk,n . ak,end}
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Viterbi Algorithm

• The value of the product can become 

extremely small, which leads to overflowing.

• To avoid overflowing, use log value instead. 

 

  sk,i+1= logel(xi+1) + max k Є Q {sk,i  + log(akl)}
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Forward-Backward Problem

 Given: a sequence of coin tosses generated    

by an HMM.

 Goal: find the probability that the dealer was 

using a biased coin at a particular time.
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Forward Algorithm

• Define fk,i (forward probability) as the 

probability of emitting the prefix x1…xi and 

reaching the state π = k.

• The recurrence for the forward algorithm:

   

                  fk,i = ek(xi) . Σ fl,i-1 . alk                                                      
l Є Q
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Backward Algorithm

• However, forward probability is not the only 

factor affecting P(πi = k|x).

• The sequence of transitions and emissions 

that the HMM undergoes between πi+1 and πn 

also affect P(πi = k|x).

                  forward      xi    backward
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Backward Algorithm (cont’d)

• Define backward probability bk,i as the 

probability of being in state πi = k and emitting 

the suffix xi+1…xn.

• The recurrence for the backward algorithm:

      bk,i = Σ el(xi+1) . bl,i+1 . akl                                                 
l Є Q
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Backward-Forward Algorithm

• The probability that the dealer used a 
biased coin at any moment i:

           P(x, πi = k)       fk(i) . bk(i)
     P(πi = k|x) = _______________ = ______________

   P(x)                 P(x)

P(x) is the sum of P(x, πi = k) over all k
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Finding Distant Members of a Protein Family

• A distant cousin of functionally related sequences in 
a protein family may have weak pairwise similarities 
with each member of the family and thus fail 
significance test. 

• However, they may have weak similarities with 
many members of the family.  

• The goal is to align a sequence to all members of 
the family at once.

• Family of related proteins can be represented by 
their multiple alignment and the corresponding 
profile.
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Profile Representation of Protein Families

Aligned DNA sequences can be represented by  a 

4 ·n profile matrix reflecting the frequencies 

of nucleotides in every aligned position.

Protein family can be represented by a 20·n  profile 

representing frequencies of amino acids.
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Profiles and HMMs

• HMMs can also be used for aligning a 

sequence against a profile representing 

   protein family.

• A 20·n profile P corresponds to n 

sequentially linked match states M1,…,Mn 

in the profile HMM of P.
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Multiple Alignments and Protein 

Family Classification

• Multiple alignment of a protein family shows 

variations in conservation along the length of 

a protein

• Example: after aligning many globin proteins, 

the biologists recognized that the helices 

region in globins are more conserved than 

others.
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What are Profile HMMs ?

• A Profile HMM is a probabilistic 

representation of a multiple alignment.

• A given multiple alignment (of a protein 

family) is used to build a profile HMM.

• This model then may be used to find and 

score less obvious potential matches of new 

protein sequences.
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Profile HMM

A profile HMM
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Building a profile HMM

• Multiple alignment is used to construct the HMM model.

• Assign each column to a Match state in HMM. Add Insertion and 
Deletion state. 

• Estimate the emission probabilities according to amino acid 
counts in column. Different positions in the protein will have 
different emission probabilities.

• Estimate the transition probabilities between Match, Deletion and 
Insertion states

• The HMM model gets trained to derive the optimal parameters.
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States of Profile HMM

• Match states    M1…Mn (plus begin/end states) 

• Insertion states I0I1…In

• Deletion states D1…Dn
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Transition Probabilities in Profile HMM

• log(aMI)+log(aIM) = gap initiation penalty

• log(aII) = gap extension penalty



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Emission Probabilities in Profile HMM

• Probabilty of emitting a symbol a at an 

  insertion state Ij:

   eIj(a) = p(a)

  where p(a) is the frequency of the 

  occurrence of the symbol a in all the 

  sequences.
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Profile HMM Alignment

• Define vM
j (i) as the logarithmic likelihood 

score of the best path for matching x1..xi to 

profile HMM ending with xi emitted by the 

state Mj.

• vI
j (i) and vD

j (i) are defined similarly.
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Profile HMM Alignment: Dynamic Programming

vM
j-1(i-1) + log(aMj-1,Mj )

vM
j(i) = log (eMj(xi)/p(xi)) + max       vI

j-1(i-1) + log(aIj-1,Mj )

                                                       vD
j-1(i-1) + log(aDj-1,Mj )

 

                                                     vM
j(i-1) + log(aMj, Ij)

vI
j(i) = log (eIj(xi)/p(xi)) + max        vI

j(i-1) + log(aIj, Ij)

                                                     vD
j(i-1) + log(aDj, Ij)
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Paths in Edit Graph and Profile HMM

A path through an edit graph and the corresponding 
path through a profile HMM
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Making a Collection of HMM for 

Protein Families 

• Use Blast to separate a protein database into families of 
related proteins  

• Construct a multiple alignment for each protein family.

• Construct a profile HMM model and optimize the 
parameters of the model (transition and emission 
probabilities).

• Align the target sequence against each HMM to find the 
best fit between a target sequence and an HMM
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Application of Profile HMM to Modeling 

Globin Proteins
• Globins represent a large collection of protein 

sequences 

• 400 globin sequences were randomly selected 
from all globins and used to construct a multiple 
alignment.

• Multiple alignment was used to assign an initial 
HMM

• This model then get trained repeatedly with 
model lengths chosen randomly between 145 to 
170, to get an HMM model optimized 
probabilities. 
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How Good is the Globin HMM?

• 625 remaining globin sequences in the database were 
aligned to the constructed HMM resulting  in a multiple 
alignment. This multiple alignment agrees extremely well 
with the structurally derived alignment.

• 25,044 proteins, were randomly chosen from the database 
and compared against the globin HMM.

• This experiment resulted in an excellent separation 
between globin and non-globin families.
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PFAM
• Pfam decribes protein domains 

• Each protein domain family in Pfam has:

  - Seed alignment: manually verified multiple  

             alignment of a representative set of sequences.

  - HMM built from the seed alignment for further  

             database searches.

  - Full alignment generated automatically from the  HMM

• The distinction between seed and full alignments facilitates Pfam 
updates.

  - Seed alignments are stable resources.

  - HMM profiles and full alignments can be updated with

                newly found amino acid sequences. 
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PFAM Uses
• Pfam HMMs span entire domains that include 

both well-conserved motifs and less-

conserved regions with insertions and 

deletions.

• It results in modeling complete domains that 

facilitates better sequence annotation and 

leeds to a more sensitive detection.
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HMM Parameter Estimation

• So far, we have assumed that the transition 

and emission probabilities are known.

• However, in most HMM applications, the 

probabilities are not known.  It’s very hard to 

estimate the probabilities.
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HMM Parameter Estimation Problem

❑Given

➢ HMM with states and alphabet (emission 

characters)

➢ Independent training sequences x1, … xm 

❑Find HMM parameters Θ (that is, akl, ek(b)) 

that maximize 

                    P(x1, …, xm | Θ) 

    the joint probability of the training sequences. 
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Maximize the likelihood
P(x1, …, xm | Θ) as a function of Θ is called the 

likelihood of the model.

The training sequences are assumed independent, 

therefore

P(x1, …, xm | Θ) = Πi P(xi | Θ)

The parameter estimation problem seeks Θ that 

realizes

In practice the log likelihood is computed to avoid 

underflow errors

 
 i

ixP )|(max
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Two situations

Known paths  for training sequences

CpG islands marked on training sequences

One evening the casino dealer allows us to see 

when he changes dice

Unknown paths 

 CpG islands are not marked

Do not see when the casino dealer changes 

dice
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Known paths

Akl = # of times each k → l is taken in the training 

sequences

Ek(b) = # of times b is emitted from state k in the 

training sequences

Compute akl and ek(b) as maximum likelihood 

estimators:




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Pseudocounts

❑ Some state k may not appear in any of the training 

sequences. This means Akl = 0 for every state l 

and akl cannot be computed with the given 

equation.

❑ To avoid this overfitting use predetermined 

pseudocounts rkl and rk(b).

  Akl = # of transitions k→l + rkl

  Ek(b) = # of emissions of b from k + rk(b)

The pseudocounts reflect our prior biases about the 

probability values.
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Unknown paths: Viterbi training

Idea: use Viterbi decoding to compute the most 
probable path for training sequence x

Start with some guess for initial parameters and 
compute π* the most probable path for x using 
initial parameters.

Iterate until no change in π* :

1. Determine Akl and Ek(b) as before

2. Compute new parameters akl and ek(b) using the 
same formulas as before

3. Compute new π* for x and the current parameters
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Viterbi training analysis

❑ The algorithm converges precisely

 There are finitely many possible paths.

 New parameters are uniquely determined by the current π*.

 There may be several paths for x with the same probability, 
hence must compare the new π* with all previous paths 
having highest probability.

❑ Does not maximize the likelihood Πx P(x | Θ) but the 
contribution to the likelihood of  the most probable path  Πx 
P(x | Θ, π*) 

❑ In general performs less well than Baum-Welch
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Unknown paths: Baum-Welch 

Idea:

1. Guess initial values for parameters.

   art and experience, not science

2. Estimate new (better) values for parameters.

   how ?

3. Repeat until stopping criteria is met.

   what criteria ?
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Better values for parameters

Would need the Akl and Ek(b) values but cannot 

count (the path is unknown) and do not want to 

use a most probable path.

For all states k,l, symbol b and training sequence x

Compute Akl and Ek(b) as expected 

values, given the current parameters
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Notation

For any sequence of characters x emitted 

along some unknown path π, denote by 

πi = k the assumption that the state at 

position i (in which xi is emitted) is k.
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Probabilistic setting for Ak,l

Given x1, … ,xm consider a discrete probability space 

with elementary events

  εk,l, = “k → l is taken in x1, …, xm ”

For each x in {x1,…,xm} and each position i in x let Yx,i 

be a random variable defined by 

Define Y = Σx Σi Yx,i random var that counts # of times 

the event εk,l happens in x1,…,xm.


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The meaning of Akl

Let Akl be the expectation of Y

 E(Y) = Σx Σi E(Yx,i) = Σx Σi P(Yx,i = 1) =

         ΣxΣi P({εk,l | πi = k and πi+1 = l}) =

         ΣxΣi P(πi = k, πi+1 = l | x) 

Need to compute P(πi = k, πi+1 = l | x) 
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Probabilistic setting for Ek(b)

Given x1, … ,xm consider a discrete probability 

space with elementary events 

  εk,b = “b is emitted in state k in x1, … ,xm ”

For each x in {x1,…,xm} and each position i in x let 

Yx,i be a random variable defined by 

Define Y = Σx Σi Yx,i random var that counts # of 

times the event εk,b happens in x1,…,xm.
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The meaning of Ek(b)

Let Ek(b) be the expectation of Y

 E(Y) = Σx Σi E(Yx,i) = Σx Σi P(Yx,i = 1) =

 ΣxΣi P({εk,b | xi = b and πi = k}) 

Need to compute P(πi = k | x)

  
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Computing new parameters

Consider x = x1…xn  training sequence

Concentrate on positions i and i+1 

Use the forward-backward values: 

  fki = P(x1 … xi , πi = k)

  bki = P(xi+1 … xn | πi = k)
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Compute Akl    (1)

Prob k → l is taken at position i of x

 P(πi = k, πi+1 = l | x1…xn) = P(x, πi = k, πi+1 = l) / P(x)

Compute P(x) using either forward or backward values

We’ll show that P(x, πi = k, πi+1 = l) = bli+1 ·el(xi+1) ·akl ·fki

 

Expected # times k → l is used in training sequences

  Akl = Σx Σi (bli+1 ·el(xi+1) ·akl ·fki) / P(x)
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Compute Akl    (2)

P(x, πi = k, πi+1 = l) = 

P(x1…xi, πi = k, πi+1 = l, xi+1…xn) =

P(πi+1 = l, xi+1…xn | x1…xi, πi = k)·P(x1…xi,πi =k)=

P(πi+1 = l, xi+1…xn | πi = k)·fki =

P(xi+1…xn | πi = k, πi+1 = l)·P(πi+1 = l | πi = k)·fki =

P(xi+1…xn | πi+1 = l)·akl ·fki =

P(xi+2…xn | xi+1, πi+1 = l) · P(xi+1 | πi+1 = l) ·akl ·fki =

P(xi+2…xn | πi+1 = l) ·el(xi+1) ·akl ·fki =

bli+1 ·el(xi+1) ·akl ·fki 
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Compute Ek(b)

Prob xi of x is emitted in state k

P(πi = k | x1…xn) = P(πi = k, x1…xn)/P(x) 

P(πi = k, x1…xn) = P(x1…xi,πi = k,xi+1…xn) = 

P(xi+1…xn | x1…xi,πi = k) · P(x1…xi,πi = k) =

P(xi+1…xn | πi = k) · fki = bki · fki

Expected # times b is emitted in state k

( ) 
=

=
x bxi

kikik

i

xPbfbE
:

)()(
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Finally, new parameters

Can add pseudocounts as before.
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
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Stopping criteria

Cannot actually reach maximum (optimization of 
continuous functions)

Therefore need stopping criteria

Compute the log likelihood of  the model for 
current Θ

 Compare with previous log likelihood

 Stop if small difference

Stop after a certain number of iterations

 
x

xP )|(log
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The Baum-Welch algorithm

Initialization:

 Pick the best-guess for model parameters

  (or arbitrary)

Iteration:

1. Forward for each x

2. Backward for each x

3. Calculate Akl, Ek(b)

4. Calculate new akl, ek(b)

5. Calculate new log-likelihood

Until log-likelihood does not change much



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Baum-Welch  analysis 

Log-likelihood is increased by iterations

 Baum-Welch is a particular case of the EM 

(expectation maximization) algorithm

Convergence to local maximum. Choice of 

initial parameters determines local maximum to 

which the algorithm converges
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