
www.bioalgorithms.infoAn Introduction to Bioinformatics Algorithms

Molecular Evolution

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Evolutionary Trees

How are these trees built from DNA sequences?

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Evolutionary Trees

How are these trees built from DNA sequences?

• leaves represent existing species

• internal vertices represent ancestors

• root represents the oldest evolutionary

ancestor

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Rooted and Unrooted Trees

In the unrooted tree the position of

the root (“oldest ancestor”) is

unknown. Otherwise, they are like

rooted trees

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Distances in Trees

• Edges may have weights reflecting:

• Number of mutations on evolutionary path from

one species to another

• Time estimate for evolution of one species into

another

• In a tree T, we often compute

 dij(T) - the length of a path between leaves i and j

 dij(T) – tree distance between i and j

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Distance in Trees: an Exampe

 d1,4 = 12 + 13 + 14 + 17 + 12 = 68

i

j

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Distance Matrix

• Given n species, we can compute the n x n

distance matrix Dij

• Dij may be defined as the edit distance between

a gene in species i and species j, where the

gene of interest is sequenced for all n species.

 Dij – edit distance between i and j

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Edit Distance vs. Tree Distance

• Given n species, we can compute the n x n

distance matrix Dij

• Dij may be defined as the edit distance between

a gene in species i and species j, where the

gene of interest is sequenced for all n species.

 Dij – edit distance between i and j

• Note the difference with

 dij(T) – tree distance between i and j

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Fitting Distance Matrix

• Given n species, we can compute the n x n

distance matrix Dij

• Evolution of these genes is described by a

tree that we don’t know.

• We need an algorithm to construct a tree that

best fits the distance matrix Dij

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Fitting Distance Matrix

• Fitting means Dij = dij(T)

Lengths of path in an (unknown) tree T

Edit distance between species (known)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reconstructing a 3 Leaved Tree

• Tree reconstruction for any 3x3 matrix is
straightforward

• We have 3 leaves i, j, k and a center vertex c

Observe:

dic + djc = Dij

dic + dkc = Dik

djc + dkc = Djk

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reconstructing a 3 Leaved Tree (cont’d)

 dic + djc = Dij

 + dic + dkc = Dik

 2dic + djc + dkc = Dij + Dik

2dic + Djk = Dij + Dik

 dic = (Dij + Dik – Djk)/2
Similarly,

 djc = (Dij + Djk – Dik)/2

 dkc = (Dki + Dkj – Dij)/2

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Trees with > 3 Leaves

• An tree with n leaves has 2n-3 edges

• This means fitting a given tree to a distance

matrix D requires solving a system of “n

choose 2” equations with 2n-3 variables

• This is not always possible to solve for n > 3

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Additive Distance Matrices

Matrix D is

ADDITIVE if there

exists a tree T with

dij(T) = Dij

NON-ADDITIVE

otherwise

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Distance Based Phylogeny Problem

• Goal: Reconstruct an evolutionary tree from a

distance matrix

• Input: n x n distance matrix Dij

• Output: weighted tree T with n leaves fitting D

• If D is additive, this problem has a solution

and there is a simple algorithm to solve it

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Using Neighboring Leaves to Construct the Tree

• Find neighboring leaves i and j with parent k

• Remove the rows and columns of i and j

• Add a new row and column corresponding to k,
where the distance from k to any other leaf m can
be computed as:

Dkm = (Dim + Djm – Dij)/2

Compress i and j into

k, iterate algorithm for

rest of tree

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Finding Neighboring Leaves

• To find neighboring leaves we simply select a

pair of closest leaves.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Finding Neighboring Leaves

• To find neighboring leaves we simply select a

pair of closest leaves.

 WRONG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Finding Neighboring Leaves

• Closest leaves aren’t necessarily neighbors

• i and j are neighbors, but (dij = 13) > (djk = 12)

• Finding a pair of neighboring leaves is

 a nontrivial problem!

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Neighbor Joining Algorithm

• In 1987 Naruya Saitou and Masatoshi Nei
developed a neighbor joining algorithm for
phylogenetic tree reconstruction

• Finds a pair of leaves that are close to each
other but far from other leaves: implicitly finds a
pair of neighboring leaves

• Advantages: works well for additive and other non-
additive matrices, it does not have the flawed
molecular clock assumption

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Degenerate Triples

• A degenerate triple is a set of three distinct

elements 1≤i,j,k≤n where Dij + Djk = Dik

• Element j in a degenerate triple i,j,k lies on the

evolutionary path from i to k (or is attached to

this path by an edge of length 0).

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Looking for Degenerate Triples

• If distance matrix D has a degenerate triple
i,j,k then j can be “removed” from D thus
reducing the size of the problem.

• If distance matrix D does not have a
degenerate triple i,j,k, one can “create” a
degenerative triple in D by shortening all
hanging edges (in the tree).

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Shortening Hanging Edges to

Produce Degenerate Triples
• Shorten all “hanging” edges (edges that

connect leaves) until a degenerate triple is

found

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Finding Degenerate Triples

• If there is no degenerate triple, all hanging edges

are reduced by the same amount δ, so that all pair-

wise distances in the matrix are reduced by 2δ.

• Eventually this process collapses one of the leaves

(when δ = length of shortest hanging edge), forming

a degenerate triple i,j,k and reducing the size of the

distance matrix D.

• The attachment point for j can be recovered in the

reverse transformations by saving Dij for each

collapsed leaf.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reconstructing Trees for Additive Distance Matrices

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

AdditivePhylogeny Algorithm

1. AdditivePhylogeny(D)

2. if D is a 2 x 2 matrix

3. T = tree of a single edge of length D1,2

4. return T

5. if D is non-degenerate

6. δ = trimming parameter of matrix D

7. for all 1 ≤ i ≠ j ≤ n

8. Dij = Dij - 2δ

9. else

10. δ = 0

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

AdditivePhylogeny (cont’d)

1. Find a triple i, j, k in D such that Dij + Djk = Dik

2. x = Dij

3. Remove jth row and jth column from D
4. T = AdditivePhylogeny(D)
5. Add a new vertex v to T at distance x from i to k
6. Add j back to T by creating an edge (v,j) of length 0
7. for every leaf l in T
8. if distance from l to v in the tree ≠ Dl,j

9. output “matrix is not additive”
10. return
11. Extend all “hanging” edges by length δ
12. return T

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The Four Point Condition

• AdditivePhylogeny provides a way to check if

distance matrix D is additive

• An even more efficient additivity check is

the “four-point condition”

• Let 1 ≤ i,j,k,l ≤ n be four distinct leaves in a

tree

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The Four Point Condition (cont’d)

Compute: 1. Dij + Dkl, 2. Dik + Djl, 3. Dil + Djk

1

2 3

2 and 3 represent

the same

number: the

length of all

edges + the

middle edge (it is

counted twice)

1 represents a

smaller

number: the

length of all

edges – the

middle edge

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The Four Point Condition: Theorem

• The four point condition for the quartet i,j,k,l

is satisfied if two of these sums are the same,

with the third sum smaller than these first two

• Theorem : An n x n matrix D is additive if and

only if the four point condition holds for every

quartet 1 ≤ i,j,k,l ≤ n

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Least Squares Distance Phylogeny

Problem

• If the distance matrix D is NOT additive, then we look for a
tree T that approximates D the best:

 Squared Error : ∑i,j (dij(T) – Dij)
2

• Squared Error is a measure of the quality of the fit between
distance matrix and the tree: we want to minimize it.

• Least Squares Distance Phylogeny Problem: finding the
best approximation tree T for a non-additive matrix D (NP-
hard).

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

UPGMA: Unweighted Pair Group

Method with Arithmetic Mean

• UPGMA is a clustering algorithm that:

• computes the distance between clusters

using average pairwise distance

• assigns a height to every vertex in the tree,

effectively assuming the presence of a

molecular clock and dating every vertex

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

UPGMA’s Weakness

• The algorithm produces an ultrametric tree :

the distance from the root to any leaf is the

same

• UPGMA assumes a constant molecular

clock: all species represented by the

leaves in the tree are assumed to

accumulate mutations (and thus evolve)

at the same rate. This is a major pitfalls

of UPGMA.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

UPGMA’s Weakness: Example

2

3

4

1
1 4 32

Correct tree
UPGMA

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Clustering in UPGMA

Given two disjoint clusters Ci, Cj of sequences,

 1

 dij = ––––––––– {p Ci, q Cj}dpq

 |Ci|  |Cj|

Note that if Ck = Ci  Cj, then distance to
another cluster Cl is:

 dil |Ci| + djl |Cj|

 dkl = ––––––––––––––

 |Ci| + |Cj|

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

UPGMA Algorithm

Initialization:

 Assign each xi to its own cluster Ci

 Define one leaf per sequence, each at height 0

Iteration:

 Find two clusters Ci and Cj such that dij is min

 Let Ck = Ci  Cj

 Add a vertex connecting Ci, Cj and place it at height dij /2

 Delete Ci and Cj

Termination:

 When a single cluster remains

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

UPGMA Algorithm (cont’d)

1 4

3
2 5

1 4 2 3 5

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Alignment Matrix vs. Distance Matrix

 Sequence a gene of length m

nucleotides in n species to generate an…

 n x m alignment matrix

n x n distance

matrix

CANNOT be

transformed back

into alignment

matrix because

information was

lost on the forward

transformation

Transform

into…

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Character-Based Tree Reconstruction

• Better technique:

• Character-based reconstruction algorithms

use the n x m alignment matrix

 (n = # species, m = #characters)

 directly instead of using distance matrix.

• GOAL: determine what character strings at

internal nodes would best explain the character

strings for the n observed species

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Character-Based Tree Reconstruction

(cont’d)

• Characters may be nucleotides, where A, G,

C, T are states of this character. Other

characters may be the # of eyes or legs or

the shape of a beak or a fin.

• By setting the length of an edge in the tree to

the Hamming distance, we may define the

parsimony score of the tree as the sum of

the lengths (weights) of the edges

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Parsimony Approach to Evolutionary

Tree Reconstruction

• Applies Occam’s razor principle to identify the

simplest explanation for the data

• Assumes observed character differences

resulted from the fewest possible mutations

• Seeks the tree that yields lowest possible

parsimony score - sum of cost of all

mutations found in the tree

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Parsimony and Tree Reconstruction

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Character-Based Tree Reconstruction

(cont’d)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Small Parsimony Problem

• Input: Tree T with each leaf labeled by an m-
character string.

• Output: Labeling of internal vertices of the
tree T minimizing the parsimony score.

• We can assume that every leaf is labeled by
a single character, because the characters in
the string are independent.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Weighted Small Parsimony Problem

• A more general version of Small Parsimony
Problem

• Input includes a k * k scoring matrix describing
the cost of transformation of each of k states
into another one

• For Small Parsimony problem, the scoring
matrix is based on Hamming distance

 dH(v, w) = 0 if v=w

 dH(v, w) = 1 otherwise

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Scoring Matrices

A T G C

A 0 1 1 1

T 1 0 1 1

G 1 1 0 1

C 1 1 1 0

A T G C

A 0 3 4 9

T 3 0 2 4

G 4 2 0 4

C 9 4 4 0

Small Parsimony Problem Weighted Parsimony Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Unweighted vs. Weighted

Small Parsimony Scoring Matrix:

A T G C

A 0 1 1 1

T 1 0 1 1

G 1 1 0 1

C 1 1 1 0

Small Parsimony Score:5

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Unweighted vs. Weighted

Weighted Parsimony Scoring Matrix:

A T G C

A 0 3 4 9

T 3 0 2 4

G 4 2 0 4

C 9 4 4 0

Weighted Parsimony Score: 22

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Weighted Small Parsimony

Problem: Formulation
• Input: Tree T with each leaf labeled by

elements of a k-letter alphabet and a k x k

scoring matrix (ij)

• Output: Labeling of internal vertices of the

tree T minimizing the weighted parsimony

score

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sankoff’s Algorithm

• Check children’s every

vertex and determine

the minimum between

them

• An example

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sankoff Algorithm: Dynamic

Programming

• Calculate and keep track of a score for every

possible label at each vertex

• st(v) = minimum parsimony score of the subtree

rooted at vertex v if v has character t

• The score at each vertex is based on scores

of its children:

• st(parent) = mini {si(left child) + i, t} +

 minj {sj(right child) + j, t}

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sankoff Algorithm (cont.)

• Begin at leaves:

• If leaf has the character in question, score is 0

• Else, score is 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sankoff Algorithm (cont.)

st(v) = mini {si(u) + i, t} +

minj{sj(w) + j, t}

sA(v) = mini{si(u) + i, A}

+ minj{sj(w) + j, A}

si(u

)
i, A

su

m

A 0 0 0

T  3 

G  4 

C  9 

si(u

)
i, A

su

m

A 0 0 0

T  3 

G  4 

C  9 

sA(v) = 0

si(u

)
i, A

su

m

A

T

G

C

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sankoff Algorithm (cont.)

st(v) = mini {si(u) + i, t} +

minj{sj(w) + j, t}

sA(v) = mini{si(u) + i, A}

+ minj{sj(w) + j, A}

sj(u

)
j, A

su

m

A

T

G

C

sj(u

)
j, A

su

m

A  0 

T  3 

G  4 

C 0 9 9

sj(u

)
j, A

su

m

A  0 

T  3 

G  4 

C 0 9 9

+ 9 = 9

sA(v) = 0

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sankoff Algorithm (cont.)

st(v) = mini {si(u) + i, t} +

minj{sj(w) + j, t}

Repeat for T, G, and C

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sankoff Algorithm (cont.)

Repeat for right subtree

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sankoff Algorithm (cont.)

Repeat for root

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sankoff Algorithm (cont.)

Smallest score at root is minimum weighted

parsimony score In this case, 9 –

so label with T

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sankoff Algorithm: Traveling down

the Tree

• The scores at the root vertex have been

computed by going up the tree

• After the scores at root vertex are computed

the Sankoff algorithm moves down the tree

and assign each vertex with optimal

character.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sankoff Algorithm (cont.)

9 is derived from 7 + 2

So left child is T,

And right child is T

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sankoff Algorithm (cont.)

And the tree is thus labeled…

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Fitch’s Algorithm

• Solves Small Parsimony problem

• Dynamic programming in essence

• Assigns a set of letter to every vertex in the

tree.

• If the two children’s sets of character overlap,

it’s the common set of them

• If not, it’s the combined set of them.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Fitch’s Algorithm (cont’d)

a

a

a

a

a

a

c

c

{t,a}

c

t

t

t

{t,a}

a

{a,c}

{a,c}
a

a

a

aa

tc

An example:

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Fitch Algorithm

1) Assign a set of possible letters to every

vertex, traversing the tree from leaves to root

• Each node’s set is the combination of its

children’s sets (leaves contain their label)

• E.g. if the node we are looking at has a left child

labeled {A, C} and a right child labeled {A, T}, the

node will be given the set {A, C, T}

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Fitch Algorithm (cont.)

2) Assign labels to each vertex, traversing the

tree from root to leaves

• Assign root arbitrarily from its set of letters

• For all other vertices, if its parent’s label is in

its set of letters, assign it its parent’s label

• Else, choose an arbitrary letter from its set as

its label

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Fitch Algorithm (cont.)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Fitch vs. Sankoff

• Both have an O(nk) runtime

• Are they actually different?

• Let’s compare …

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Fitch

As seen previously:

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Comparison of Fitch and Sankoff

• As seen earlier, the scoring matrix for the Fitch
algorithm is merely:

• So let’s do the same problem using Sankoff
algorithm and this scoring matrix

A T G C

A 0 1 1 1

T 1 0 1 1

G 1 1 0 1

C 1 1 1 0

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sankoff

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sankoff vs. Fitch

• The Sankoff algorithm gives the same set of
optimal labels as the Fitch algorithm

• For Sankoff algorithm, character t is optimal for
vertex v if st(v) = min1<i<ksi(v)
• Denote the set of optimal letters at vertex v as S(v)

• If S(left child) and S(right child) overlap, S(parent) is the
intersection

• Else it’s the union of S(left child) and S(right child)

• This is also the Fitch recurrence

• The two algorithms are identical

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Large Parsimony Problem

• Input: An n x m matrix M describing n
species, each represented by an m-character
string

• Output: A tree T with n leaves labeled by the
n rows of matrix M, and a labeling of the
internal vertices such that the parsimony
score is minimized over all possible trees and
all possible labelings of internal vertices

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Large Parsimony Problem (cont.)

• Possible search space is huge, especially as

n increases

• (2n – 3)!! possible rooted trees

• (2n – 5)!! possible unrooted trees

• Problem is NP-complete

• Exhaustive search only possible w/ small n(< 10)

• Hence, branch and bound or heuristics used

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Nearest Neighbor Interchange
A Greedy Algorithm

• A Branch Swapping algorithm

• Only evaluates a subset of all possible trees

• Defines a neighbor of a tree as one

reachable by a nearest neighbor interchange

• A rearrangement of the four subtrees defined by

one internal edge

• Only three different rearrangements per edge

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Nearest Neighbor Interchange

(cont.)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Nearest Neighbor Interchange

(cont.)
• Start with an arbitrary tree and check its

neighbors

• Move to a neighbor if it provides the best

improvement in parsimony score

• No way of knowing if the result is the most

parsimonious tree

• Could be stuck in local optimum

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Nearest Neighbor Interchange

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Subtree Pruning and Regrafting
Another Branch Swapping Algorithm

http://artedi.ebc.uu.se/course/BioInfo-10p-2001/Phylogeny/Phylogeny-TreeSearch/SPR.gif

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Tree Bisection and Reconnection
Another Branch Swapping Algorithm

Most extensive

swapping routine

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Homoplasy

• But what if this was the real tree?

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sources

• http://www.math.tau.ac.il/~rshamir/ge/02/scribes/lec01.pdf

• http://bioinformatics.oupjournals.org/cgi/screenpdf/20/3/340.pdf

• http://www.absoluteastronomy.com/encyclopedia/M/Mi/Minimum_span
ning_tree.htm

• Serafim Batzoglou (UPGMA slides)
http://www.stanford.edu/class/cs262/Slides

• Watkins, W.S., Rogers A.R., Ostler C.T., Wooding, S., Bamshad M. J.,
Brassington A.E., Carroll M.L., Nguyen S.V., Walker J.A., Prasas, R.,
Reddy P.G., Das P.K., Batzer M.A., Jorde, L.B.: Genetic Variation
Among World Populations: Inferences From 100 Alu Insertion
Polymorphisms

http://www.math.tau.ac.il/~rshamir/ge/02/scribes/lec01.pdf
http://bioinformatics.oupjournals.org/cgi/screenpdf/20/3/340.pdf
http://www.absoluteastronomy.com/encyclopedia/M/Mi/Minimum_spanning_tree.htm
http://www.absoluteastronomy.com/encyclopedia/M/Mi/Minimum_spanning_tree.htm

	Διαφάνεια 1: Molecular Evolution
	Διαφάνεια 2: Evolutionary Trees
	Διαφάνεια 3: Evolutionary Trees
	Διαφάνεια 4: Rooted and Unrooted Trees
	Διαφάνεια 5: Distances in Trees
	Διαφάνεια 6: Distance in Trees: an Exampe
	Διαφάνεια 7: Distance Matrix
	Διαφάνεια 8: Edit Distance vs. Tree Distance
	Διαφάνεια 9: Fitting Distance Matrix
	Διαφάνεια 10: Fitting Distance Matrix
	Διαφάνεια 11: Reconstructing a 3 Leaved Tree
	Διαφάνεια 12: Reconstructing a 3 Leaved Tree (cont’d)
	Διαφάνεια 13: Trees with > 3 Leaves
	Διαφάνεια 14: Additive Distance Matrices
	Διαφάνεια 15: Distance Based Phylogeny Problem
	Διαφάνεια 16: Using Neighboring Leaves to Construct the Tree
	Διαφάνεια 17: Finding Neighboring Leaves
	Διαφάνεια 18: Finding Neighboring Leaves
	Διαφάνεια 19: Finding Neighboring Leaves
	Διαφάνεια 20: Neighbor Joining Algorithm
	Διαφάνεια 21: Degenerate Triples
	Διαφάνεια 22: Looking for Degenerate Triples
	Διαφάνεια 23: Shortening Hanging Edges to Produce Degenerate Triples
	Διαφάνεια 24: Finding Degenerate Triples
	Διαφάνεια 25: Reconstructing Trees for Additive Distance Matrices
	Διαφάνεια 26: AdditivePhylogeny Algorithm
	Διαφάνεια 27: AdditivePhylogeny (cont’d)
	Διαφάνεια 28: The Four Point Condition
	Διαφάνεια 29: The Four Point Condition (cont’d)
	Διαφάνεια 30: The Four Point Condition: Theorem
	Διαφάνεια 31: Least Squares Distance Phylogeny Problem
	Διαφάνεια 32: UPGMA: Unweighted Pair Group Method with Arithmetic Mean
	Διαφάνεια 33: UPGMA’s Weakness
	Διαφάνεια 34: UPGMA’s Weakness: Example
	Διαφάνεια 35: Clustering in UPGMA
	Διαφάνεια 36: UPGMA Algorithm
	Διαφάνεια 37: UPGMA Algorithm (cont’d)
	Διαφάνεια 38: Alignment Matrix vs. Distance Matrix
	Διαφάνεια 39: Character-Based Tree Reconstruction
	Διαφάνεια 40: Character-Based Tree Reconstruction (cont’d)
	Διαφάνεια 41: Parsimony Approach to Evolutionary Tree Reconstruction
	Διαφάνεια 42: Parsimony and Tree Reconstruction
	Διαφάνεια 43: Character-Based Tree Reconstruction (cont’d)
	Διαφάνεια 44: Small Parsimony Problem
	Διαφάνεια 45: Weighted Small Parsimony Problem
	Διαφάνεια 46: Scoring Matrices
	Διαφάνεια 47: Unweighted vs. Weighted
	Διαφάνεια 48: Unweighted vs. Weighted
	Διαφάνεια 49: Weighted Small Parsimony Problem: Formulation
	Διαφάνεια 50: Sankoff’s Algorithm
	Διαφάνεια 51: Sankoff Algorithm: Dynamic Programming
	Διαφάνεια 52: Sankoff Algorithm (cont.)
	Διαφάνεια 53: Sankoff Algorithm (cont.)
	Διαφάνεια 54: Sankoff Algorithm (cont.)
	Διαφάνεια 55: Sankoff Algorithm (cont.)
	Διαφάνεια 56: Sankoff Algorithm (cont.)
	Διαφάνεια 57: Sankoff Algorithm (cont.)
	Διαφάνεια 58: Sankoff Algorithm (cont.)
	Διαφάνεια 59: Sankoff Algorithm: Traveling down the Tree
	Διαφάνεια 60: Sankoff Algorithm (cont.)
	Διαφάνεια 61: Sankoff Algorithm (cont.)
	Διαφάνεια 62: Fitch’s Algorithm
	Διαφάνεια 63: Fitch’s Algorithm (cont’d)
	Διαφάνεια 64: Fitch Algorithm
	Διαφάνεια 65: Fitch Algorithm (cont.)
	Διαφάνεια 66: Fitch Algorithm (cont.)
	Διαφάνεια 67: Fitch vs. Sankoff
	Διαφάνεια 68: Fitch
	Διαφάνεια 69: Comparison of Fitch and Sankoff
	Διαφάνεια 70: Sankoff
	Διαφάνεια 71: Sankoff vs. Fitch
	Διαφάνεια 72: Large Parsimony Problem
	Διαφάνεια 73: Large Parsimony Problem (cont.)
	Διαφάνεια 74: Nearest Neighbor Interchange A Greedy Algorithm
	Διαφάνεια 75: Nearest Neighbor Interchange (cont.)
	Διαφάνεια 76: Nearest Neighbor Interchange (cont.)
	Διαφάνεια 77: Nearest Neighbor Interchange
	Διαφάνεια 78: Subtree Pruning and Regrafting Another Branch Swapping Algorithm
	Διαφάνεια 79: Tree Bisection and Reconnection Another Branch Swapping Algorithm
	Διαφάνεια 80: Homoplasy
	Διαφάνεια 81: Sources

