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Machine learning (ML) [Michalski et al. 2013] concerns the development and
assessment of algorithms that enable computer systems to learn by trial-and-error,
that is, to improve with more data their performance with respect to some task
without being explicitly programmed for it. Although the term machine learning
was coined in 1959 by Arthur Samuel [Samuel 1959], Tom Mitchell [Mitchell 1997]
provided a more formal definition: “A computer program is said to learn from
experience E with respect to some task T and some performance measure P, if its
performance on T, as measured by P, improves with experience E.”

ML has be applied to many real-world problems or tasks, like medical diagno-
sis, robotics, recommendation systems, facial recognition, stock prices prediction,
and sentiment analysis, with great success.

We can divide ML algorithms into three main categories (see Figure 4.1):
(1) supervised learning (SL) [Russell and Norvig 2016], (2) reinforcement learning (RL)
[Sutton and Barto 1998], and (3) unsupervised learning (UL). In SL, the system is pre-
sented with labeled samples (i.e., inputs with desired outputs given by an oracle)
and the task is to learn a mapping (e.g., a function) from the input space to the
output space. In RL, the agent is given rewards (or punishments) as a feedback to
its actions (and current state) in a possibly dynamic environment. In other words,
the agent receives reinforcement signals when the actions it takes help toward solv-
ing the desired task(s). In UL, no labels or reward signals are given to the system
and the system has to discover the underlying or hidden structure of the data (e.g.,
clustering). In this chapter, we will only consider SL and UL, and do not talk about
RL as it is not commonly used in real-world engineering problems.

SL algorithms can be categorized into two main categories: (1) regression, and
(2) classification algorithms. Regression algorithms attempt to estimate the map-
ping from the input variables to numerical or continuous output variables. On
the contrary, classification algorithms attempt to estimate the mapping from the
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Figure 4.1 Machine learning taxonomy. Image inspired by http://www.cognub.com/index.php/
cognitive-platform.

input variables to discrete or categorical output variables. Regression usually refers
to predicting real-valued continuous parameters, whereas classification concerns
assigning a label, representing a class, to an input sample. More formally, we
assume that we have access to a dataset of the form D = {(x1, y1), . . . , (xN , yN)},
where N is the number of samples, xi are the input variables (also called features)
(in vector form), yi = f (xi), and f (·) is the mapping of interest. The goal of regres-
sion and classification algorithms is to model this mapping f in an attempt to not
only to minimize the error from the observed samples, but also to generalize to
unseen data-points.

UL usually refers to either clustering or dimensionality reduction. In clustering,
the task is to group a set of points in such a way that points in the same group
(called a cluster) are more similar (given some metric) to each other than to those
in other clusters. Dimensionality reduction is the process of reducing the num-
ber of variables under consideration by obtaining a set of principal variables that
can describe adequately the original data. More formally, we assume that we have
access to a dataset of the form D = {x1, . . . , xN}, and the goal is to learn a mapping
f : X → Y , where Y is problem dependent. For example, in clustering f can be
seen as a function that assigns to each data point a cluster (that is automatically
generated fromD). In this chapter, wewill only consider clustering algorithms, and
do not talk about dimensionality reduction algorithms.

http://www.cognub.com/index.php/cognitive-platform
http://www.cognub.com/index.php/cognitive-platform
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InML,models play a crucial role as we can find them inmost algorithms regard-
less of the category they fit in. A model in ML can be any mathematical represen-
tation of a real-world process. There exist two main classes of models (that we use
both for regression and classification): (a) parametric and (b) non-parametric ones.
Parametric models assume some finite set of parameters, �. Given these param-
eters, future predictions, f (x), are independent of the observed data, Y . In other
words, P(f (x)|�,Y) = P(f (x)|�) and therefore we say that the dataset is diffused
in the parameters �. Perhaps the most widely used parametric model is the liner
model f (x) = xT� (see Section 4.2.1.1). Non-parametric models assume that the
data distribution cannot be defined in terms of a finite set of parameters, but it
can be defined by assuming an infinite dimensional �. Usually we think of � as a
function. The amount of information that � can capture about the data Y can grow
as the amount of data grows. One of the most successful non-parametric models
in ML are Gaussian processes (GPs; see Section 4.2.1.3).

A similar taxonomy that is common in ML is the following: instance-based and
model-based algorithms. In instance-based methods (also called memory-based or
lazy learning methods), prediction for each new sample is based on the whole
dataset, stored in the memory. So, the prediction “model” consists of all the sam-
ple (instances) in the dataset. In model-based learning, a prediction “model” is
extracted from the samples in the dataset and thismodel is used afterward for each
new sample parameter value or class prediction. This is very similar to the taxon-
omy of models (parametric and non-parametric) as in most of the cases instance-
based algorithms use non-parametric models and model-based algorithms use
parametric models.

In the next section (Section 4.1), we will provide a brief summary of the proba-
bility theory that is crucial for understanding the concepts of ML algorithms. Next
we will discuss about some of the most successful and common SL algorithms
(Section 4.2): linear regression (LR), GPs, neural networks (NNs), naïve Bayes (NB),
support vector machines (SVMs), and decision trees (DTs). Finally, we will see
two algorithms for UL (Section 4.3), namely the K-means algorithm and Gaussian
mixture models (GMMs).

4.1 Probability Primer
Probability measures the likelihood of an event happening and concerns, loosely
speaking, the study of uncertainty. Probability can actually be seen as the fraction
of times an event occurs, or how likely is an event to happen. It measures with a
number between 0 and 1 the degree of certainty that a specific event will happen,
where 0 indicates impossibility and 1 complete certainty. The higher the probabil-
ity of an event, the more likely it is that the event will occur. Perhaps the simplest
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example is the tossing of a fair coin.When tossing a coin there exist two outcomes:
“heads” and “tails.” The probability of “heads” equals the probability of “tails”:
we say that the two outcomes are equally probable. Of course, in our toy example
there are no other outcomes possible, and thus the probability of either outcome
is 1

2 = 0.5 (or 50%).
In order to quantify uncertainty and formulate the probability theory, we need

the idea of a random variable. A random variable is a variable whose possible values
are outcomes of a random phenomenon. In essence, it is a function that maps the
outcomes of this random phenomenon to a set of properties that we can manipu-
late. Going one step further, we would also like to have a function that quantifies
the probability that a set of outcomes will occur. We call this function a probabil-
ity distribution and it will play a crucial role in understanding other concepts in
probability theory.

4.1.1 Probability Theory Formalization
Modern probability theory is based on a set of axioms proposed by Kolmogorov
[Grinstead and Snell 2012], which introduce three main concepts:

• The sample space, Ω, is the set of all possible outcomes of the experiment.
For example, imagine tossing a fair coin two consecutive times: the sample
space is defined as {“heads, heads,” “heads, tails,” “tails, heads,” “tails, tails”}.

• The event space,A, is the space of potential results of the randomexperiment.
Usually, we obtain the event space by the collection of the subsets of Ω.

• For each event A ∈ A, we define the probability of this event as a real number,
P(A) ∈ [0, 1], that measures the degree of belief or the relevant frequency of
an event to the total number of events that can occur.

The total probability over all outcomes in the sample space must be 1. In other
words, we need to have P(Ω) = 1.We define the random variable,X , as themapping
X : Ω → Γ, where Γ is a quantity of interest. To better understand this concept,
let’s consider the following example:

Example 4.1 Random variable
Consider that we have a bag that contains red and yellowmarbles.We play a gamewhere
we draw randomly (with replacement1) twomarbles from the bag. It is easy to verify that
the sample space,Ω, is: {(R,R), (R,Y), (Y ,R), (Y ,Y)}. We are now interested inmeasur-
ing how many times a yellow marble appears in this game. In essence, we would like to
investigate the mapping X : Ω→ Γ, where Γ = {0, 1, 2} as a yellow marble can appear
0, 1, or 2 times. This mapping is what we call a random variable.

1. In other words, once we draw something, we put it back in the bag.
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4.1.2 Discrete and Continuous Probabilities
When the quantity of interest, Γ, is discrete, then we say that we are handling
discrete probabilities. On the other hand, when Γ is continuous (i.e., Γ ∈ R), we
have continuous probabilities. In the discrete case, we define the probability that a
random variable, X , takes the value x as:

p(X = x) = nX=x

NX
(4.1)

where NX is the total number of values it can get.
In many cases, we will be handling multiple random variables at the same time

(that possibly interact with each other). We define the joint probability that a ran-
dom variable, X , takes a specific value, x, and a second random variable, Y , takes
the value y as:

p(X = x,Y = y) =
nX=x,Y=y

NXNY
(4.2)

In other words, the joint probability defines the probability of the intersection
of the two events. We can write p(x, y) instead of p(X = x,Y = y). Similarly, we can
write the marginal probability that X takes the value x irrespective of the value of
the random variable Y as p(x). Finally, when considering the conditional probability
that X takes the value x given that Y = y, we write p(x|y).

4.1.2.1 Probability Density and Cumulative Distribution Function
Definition 4.1 A function f ∈ RD → R is a probability density function (pdf) if:

• ∀x ∈ RD : f (x) ≥ 0,
• Its integral exists and ∫

RD
f (x)dx = 1 (4.3)

In the discrete case, the pdf is called probability mass function and the integral is
replacedwith a sum.One can notice that the pdf can be any function f that satisfies
Definition 4.1. We associate a random variable X with this function by:

p(a ≤ X ≤ b) =
∫ b

a
f (x)dx (4.4)

where a, b ∈ R, and x ∈ R are outcomes of the continuous random variable X . It
might not be clear at first sight that for a continuous variable p(X = x) is zero. This
is easy to verify from Equation 4.4 and contradicts the discrete case.
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Definition 4.2 A cumulative distribution function (cdf) of amultivariate real-valued random variable
X is:

F(x) = p(X1 ≤ x1, . . . ,XD ≤ xD) (4.5)

where x ∈ RD.

The cdf basically represents the probability that the random variable X i takes
the value smaller than or equal to xi.

4.1.3 Properties of Probabilities
Once we have defined our random variables, we can start manipulating them.
Assuming that we have only two random variables, X and Y , we can define the
sum rule as follows:

p(x) =
∫

Y
p(x, y)dy (4.6)

where with Y we denote the possible states of the target space of the random vari-
able Y . From now on, we denote with bold symbols the values of multivariate
random variables.

In the discrete case, the integral is replaced with a sum.We can exchange x and
y in Equation 4.6: the sum rule holds for every random variable.With the sum rule,
we integrate out the set of states of the variable Y . This is why the sum rule is also
knownas themarginalization property. In otherwords, the sum rule relates the joint
distribution, p(x, y), to a marginal distribution. We can, of course, extend the sum
rule to more than two random variables.

We define the product rule, that relates the joint distribution to the conditional
distribution, as follows:

p(x, y) = p(y|x)p(x) = p(x|y)p(y) (4.7)

What the product rule really tells us is that every joint distribution of two ran-
dom variables can be factorized (i.e., written as a product) of two other distribu-
tions.

In ML, we are often interested in making inferences about the value of
unobserved random variables given other variables that we can observe. One of
the most helpful and widely used theorems to do so is the Bayes’ theorem:

p(x|y)︸ ︷︷ ︸
conditional

=

likelihood︷ ︸︸ ︷
p(y|x)

prior︷︸︸︷
p(x)

p(y)︸︷︷︸
evidence

(4.8)
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where we assume the following:

• We cannot observe X ,

• We have a prior over X (i.e., p(x)),

• We can observe Y ,

• Weknow the relationship betweenX andY (i.e., p(y|x)), that is the likelihood
of Y given X .

It is easy to see that Equation 4.8 can be directly derived from the product rule
(Equation 4.7).

Example 4.2 Bayes’ theorem example
To better understand this theorem, let’s consider a simple example. Let’s assume
that 100% of the people that have pancreatic cancer, have a certain symptom, that
is, p(y|x) = 1 (likelihood). We also know that there is a one in 100,000 chance of
someone having pancreatic cancer, that is, p(x) = 0.00001 (prior), and a random
person can have the symptom with a probability of one in 10,000 (independently
of having pancreatic cancer or not), that is, p(y) = 0.0001 (evidence). Using Bayes’
theorem, we have p(x|y) = p(y|x)p(x)

y = 1·0.00001
0.0001 = 0.1. Thus, we can conclude that

even if a personhas the symptomand 100%of the cases that have pancreatic cancer
have this symptom, the probability of having pancreatic cancer is only 10%.

Definition 4.3 Two random variables X ,Y are statistically independent if and only if:

p(x, y) = p(x)p(y) (4.9)

This of course also implies that:

p(x|y) = p(x)

p(y|x) = p(y) (4.10)

Definition 4.4 Two random variables X ,Y are conditionally independent given Z if and only if:

p(x, y|z) = p(x|z)p(y|z), for all z (4.11)

4.1.4 Gaussian Distribution
Perhaps themost widely used probability distribution is theGaussian distribution.
It is the most studied distribution, and it is also referred to as normal distribution.
In the univariate case, the Gaussian distribution is described by a mean µ and a
variance �2. Its pdf is given by (Figure 4.2[a]):

N (x|µ,�) = 1√
2��2

exp
(
− (x− µ)2

2�2

)
(4.12)
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Figure 4.2 Examples of Gaussian distributions.
(a)UnivariateGaussianwithµ = 1 and�2 = 2. (b)MultivariateGaussianwithµ = [1, 2]T

and Σ =
[
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]
.

For themulti-variate case, the Gaussian distribution is defined by amean vector
µ ∈ RD and a covariance matrix Σ ∈ RD×D. Its pdf is given by (Figure 4.2[b]):

N (x|µ,Σ) = 1
(2�)D/2Σ1/2 exp

(
− 1
2

(x− µ)TΣ−1(x− µ)
)

(4.13)

4.2 Supervised Learning
In this section, we talk about SL. As we have seen in the beginning of this chapter,
SL algorithms can be categorized into two main categories: (1) regression, and (2)
classification.

4.2.1 Regression
As we already stated, regression algorithms try to find the mapping f : x→ y from
the input variables x ∈ RD to the numerical or continuous output variables y ∈ RE.
More formally, we assume access to a dataset of the form: {(x1, y1), . . . , (xN , yN)},
whereN is the number of samples, yi = f (xi)+", and " is an independent and iden-
tically distributed (IID) random variable that describes the measurement noise
and potentially unmodeled processes (which we will not consider in this section).
Throughout the section, we assume a zero mean Gaussian noise.

The goal of a regression algorithm is not only to minimize the error from the
observed samples, but also to generalize to unseen datapoints. Figure 4.3 shows
a typical example of a regression problem. The function we are trying to model is
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f (x) = cos(x) for x ∈ [−20, 20], and we are given 30 data points. The ground truth
is depicted with the dotted line and the solid line is a fit with GP regression that
we will discuss in Section 4.2.1.3.

4.2.1.1 Linear Regression
One of the simplest, but widely used type of regression, is LR. LR falls into the
parametric models category, and we assume that f (x) = xT� + ", that is, the out-
put variables are just a linear combination of the input variables plus some noise.
Because of this observation noise, we adopt a probabilistic approach and explicitly
model the noise using a likelihood function. In the stochastic linear regression we
seek to optimize:

�∗ = argmax�p(Y |X,�) (4.14)

where X and Y define the dataset. In other words, we seek to find the parameters
�∗ that maximize the likelihood of the parameterized function given the observed
data. The likelihood is given by:

p(Y |X,�) = p(y1, . . . , yN |x1, . . . , xN ,�)

=
N∏
i=1

p(yi|xi,�) (4.15)

The likelihood factors, p(yi|xi,�), are Gaussian because of the Gaussian noise
assumption that we have made. As such, the likelihood function is a product of
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Gaussians. For ease of computation, but also to avoid numerical issues2, we take
the logarithmof Equation 4.14 andwe seek tominimize the negative log-likelihood:

J(�) = −logp(Y |X,�) = −log
N∏
i=1

p(yi|xi,�) = −
N∑
i=1

logp(yi|xi,�) (4.16)

After observing that in our particular case, logp(yi|xi,�) = − 1
2�2 (yi−xTi �)2, and

some mathematical computations3, we can define our final objective function as:

J(�) = 1
2�2
||Y − X�||2 (4.17)

where X = [x1, . . . , xN ]T and Y = [y1, . . . , yN ]T . From this point, we continue by
computing the analytic derivatives of J with respect to � and we have two options4:

• Compute the analytical solution that satisfies dJ
d� = 0: in that case, the

optimum parameters are �∗ = (XTX)−1XTY ,

• Follow the gradient with any gradient-based optimizer (e.g., L-BFGS [Liu and
Nocedal 1989] or simple gradient-descent) in order to minimize J.

To understand a bit better how LR works, let’s consider the following example:

2. When implementing linear regression on a computer program.

3. We have ignored the constant terms that appear in the likelihood computations. Please refer
to Deisenroth et al. [2019] for further details.

4. We omit the details for clarity and lack of space.
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Example 4.3 Linear regression example
In this example, we use LR to fit some observed data. Let’s assume the following
dataset:

X =



0.680375
−0.211234
0.566198
0.59688
0.823295
−0.604897
−0.329554
0.536459
−0.444451
0.10794
−0.0452059
0.257742
−0.270431
0.0268018
0.904459
0.83239
0.271423
0.434594
−0.716795
0.213938



→ Y =



0.877051
−0.679582
0.769628
1.49794
1.30327
−1.30885
−1.02932
0.681727
−0.389977
−0.0658633
−0.0774794
0.854596
−0.428222
−0.150365
1.94647
1.68907
0.53643
1.34196
−1.64107
0.699233



(4.18)

This datasetwas generatedby xi = 2yi+" (where " is a small noise). In Figure 4.4,
we can see the fitted curved found by LR (Equation 4.17).

Estimating the variance So far we have assumed a fixed and known �2. To
estimate �2 from the observed data, we re-write Equation 4.16 to include it along
with �:

J(�,�2) = −logp(Y |X,�,�2) = −
N∑
i=1

logp(yi|xi,�,�
2) (4.19)

Taking the derivative of J with respect to �2 and setting it to zero (requiring
�2 > 0), we get the following analytical solution: �2∗ = 1

N

∑N
i=1(yi − xTi �)2.

4.2.1.2 Neural Networks
NNs are currently the most widely used models in ML due to their successes
over the last decades [LeCun et al. 2015, Schmidhuber 2015]. They fall into the
parametric models class.
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What is a NN? We will start by examining the “ancestor” of an NN: the percep-
tron (Figure 4.5). Interestingly, perceptrons were first developed in the 1950s–1960s
[Rosenblatt 1961], but still capture the main ideas behind NNs. A perceptron is a
neuron that takes binary inputs xi ∈ {0, 1} and produces a single binary output y.
Each input is connected to the neuron by a weight, wi, and the output y ∈ {0, 1} is
computed as follows:

y =


0, if

∑
i
wixi ≤ threshold

1, if
∑
i
wixi > threshold

(4.20)

Let’s consider a simple example to better understand how a perceptron works:

Example 4.4 Perceptron example
Imagine that you are a student and your school is organizing a game night. You like
games and thus you are considering going to this event. You might want to decide
by weighting different factors, for example:

• Is your best friend coming?
• Is your favorite game (e.g., Dungeons and Dragons [D&D]) going to be part of

the event?
• Is your worst game (e.g., poker) going to be excluded from the event?

We can represent these three factors by corresponding binary variables x0, x1,
and x2. For instance, we can have x0 = 0 if your best friend is not coming and
x0 = 1 if he is coming. Similarly, we define x1 and x2. By varying the weights and
the threshold, we can get different models of decision-making, that is, values for y.
For example, if we set w0 = 5, w1 = 2, w1 = 1, and threshold = 3, then if your best
friend comes you will definitely go, whereas we need both your favorite game to be
part and your worst game to be absent to attend the event, if your best friend is not
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coming. Try different variations of the weights and the threshold to see what you get in
this simple setting.

One can easily observe that the perceptron has its limitations. For example, let’s
try to find weights for the following function (the XOR function):

y = f (x0, x1) =

0, if x0 = x1

1, if x0 6= x1
(4.21)

Before moving on, please spend some time to try to find weights and threshold
values that can represent the XOR function. No matter how hard you try, it is
not possible to find weights and threshold values to properly model this func-
tion. This is because a perceptron can only separate linearly separable problems.
Since the XOR function is not linearly separable, it really is impossible for a single
hyperplane to separate it.

From the 1960s, things have improved a lot and now the modern neurons have
a similar form, but allow for more flexibility (Figure 4.6). The main differences
from the perceptron are: (a) the inputs can now be any real-valued number5, that
is, x ∈ RD, (b) a bias unit is included that does not depend on the inputs, and (c)
the step function (Equation 4.20) is replaced by any generic function that we call an
activation function, � (we also do not need the threshold value anymore). In short,
the output of the neuron is defined as follows:

y = �

(∑
i

wixi + b

)
(4.22)

Activation functions Some widely used activation functions are the following (see
Figure 4.7):

5. This is of course application-dependent.
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• Sigmoid: �(x) = 1
1+e−x (Figure 4.7[a]),

• Hyperbolic tangent: �(x) = tanh(x) (Figure 4.7[b]),

• ReLU: �(x) = max(0, x) (Figure 4.7[c]),

• Gaussian: �(x) = e−x
2
(Figure 4.7[d]),

• Swish: �(x) = x · sigmoid(x) (Figure 4.7[e]),

• Step: �(x) =

0, if x < 0

1, if otherwise
(Figure 4.7[f]).

Even with these additions, a single neuron cannot represent any arbitrary func-
tion. To make the representation capabilities even bigger, we do exactly what the
name of this section implies: we create a network of neurons, that is, we create a
neural network.

Formally, an NN is a graph (of any form) where neurons are interconnected with
weights, biases, andpossibly activation functions. In this section,wewill focus only
on acyclic graphs where neurons are organized in sequential layers. In each layer
the output is the weighted sum of the output of the previous layer passed through
an activation function (Figure 4.8). This is the most common type of NNs and they
are usually referred to as feedforward neural networks.

Formally, if we have an input variable x ∈ RD to the NN, an output variable
y ∈ RE andM layers, we can define a feedforward NN as follows:

y = gM

g0 = x

gi = �i−1(W i−1gi−1 + bi−1) (4.23)

Now that we have defined what feedforward NNs are, how can we use them to
perform regression?
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Let X = {x1, . . . , xN} and Y = {y1, . . . , yN} be the observed dataset like in Sec-
tion 4.2.1: i.e., yi = f (xi) + ". Let’s also define f̂ (x) as the output of our NN when
given an input x. Assuming that the network topology and activations are fixed,
it is easy to observe that the shape of f̂ depends only on the weights and biases.
Defining � = [W0,b0, . . . ,WM−1,bM−1], we can write the output of the feedforward
NN as f̂ (x|�). For regression tasks, we usually seek to minimize the mean squared
error (MSE):

J(�) =
∑N

i=1(yi − f̂ (xi|�))2

N
(4.24)

MSE is just one example of a loss function suited for regression; we can also use
the sum of the squared error or the mean absolute error. We can of course create
our own loss function that is suited to our specific case.

When trying to compute the derivative of J with respect to the parameters �,
we can observe the following: The layer sequencing (see Equation 4.23) creates a com-
position of functions. Thismakes it possible to apply the chain rule starting from the
error in the last layer andpropagating it back to the inputs. This procedure iswidely
known as back-propagation [Rumelhart et al. 1986, LeCun et al. 2015, Schmidhu-
ber 2015]. More formally we can compute the partial derivative of the weights and
biases of layer i with respect to J as follows:

∂J
∂(W i,bi)

= ∂J
∂gM

∂gM
∂gM−1

. . .
∂gi

∂(W i,bi)
(4.25)

In order to better understand how back-propagation works, let’s consider the
following example:

Example 4.5 Back-propagation example
Let’s assume that we want to approximate the function fex(x) = sin(x0)cos(x1),
where x = [x0, x1]T ∈ R2. For this we build a feedforward NN with one hidden layer
of two units and tanh as the activation function (Figure 4.9). We have in total six
weights and three biases.

The shape of the weights and biases is as follows:

W0 =
[
w00, w01
w02, w03

]
, b0 = [b00, b01]T

W 1 = [w10, w11]T , b1 = [b10]

We want to compute the partial derivatives of the MSE when given the observa-
tion {x+ = [x0, x1]T , fex(x+) = y+}. We first compute the forward pass to find the
error:
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Figure 4.9 Neural network example.

g1 = tanh(W0x+ + b0) =
[
g10
g11

]

=
[
tanh(w00x0 + w01x1 + b00)
tanh(w02x0 + w03x1 + b01)

]
g2 = tanh(W 1g1 + b1) = [tanh(w10g10 + w11g11 + b10)]

J = ||y+ − g2||
2

Then we continue to the partial derivatives of the last layer:

∂J
∂w10

= ∂J
∂g2

∂g2
∂tanh

∂tanh
∂w10

= −2 · (y+ − g2)× (1− g22)× g10

∂J
∂w11

= ∂J
∂g2

∂g2
∂tanh

∂tanh
∂w11

= −2 · (y+ − g2)× (1− g22)× g11

∂J
∂b10

= ∂J
∂g2

∂g2
∂tanh

∂tanh
∂b10

= −2 · (y+ − g2)× (1− g22)× 1

Lastly, we continue to the partial derivatives of the first layer:

∂J
∂w00

= ∂J
∂g2

∂g2
∂g10

∂g10
∂tanh

∂tanh
∂w00

= −2 · (y+ − g2)× (1− g22)w10 × (1− g210)× x0

∂J
∂w01

= ∂J
∂g2

∂g2
∂g10

∂g10
∂tanh

∂tanh
∂w01

= −2 · (y+ − g2)× (1− g22)w10 × (1− g210)× x1

∂J
∂b00

= ∂J
∂g2

∂g2
∂g10

∂g10
∂tanh

∂tanh
∂b00

= −2 · (y+ − g2)× (1− g22)w10 × (1− g210)× 1

∂J
∂w02

= ∂J
∂g2

∂g2
∂g11

∂g11
∂tanh

∂tanh
∂w02

= −2 · (y+ − g2)× (1− g22)w11 × (1− g211)× x0

∂J
∂w03

= ∂J
∂g2

∂g2
∂g11

∂g11
∂tanh

∂tanh
∂w03

= −2 · (y+ − g2)× (1− g22)w11 × (1− g211)× x1

∂J
∂b01

= ∂J
∂g2

∂g2
∂g11

∂g11
∂tanh

∂tanh
∂b01

= −2 · (y+ − g2)× (1− g22)w11 × (1− g211)× 1
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Too low Just right Too high

J(θ) J(θ)

θ θ θ

J(θ)

A small learning rate requires too many

updates to reach the local minimum

The optimal learning rate

swiftly reaches the local minimum

A very big learning rate causes drastic updates

that can lead to divergent behaviors

Figure 4.10 Choosing the best learning rate.

This is of course tedious to do by hand for big networks, and thus the usage of
anNN library is recommended: pytorch [Paszke et al. 2017], tensorflow [Abadi et al.
2015], weka [Witten et al. 2016], and tiny-dnn6 are a few examples of open-source
libraries.

Gradient descent In order to optimize the loss function J and since we can
compute the gradient using back-propagation, we use gradient descent. Gradient
descent works as follows:

�n+1 = �n + � ∂J
∂�

(4.26)

where � is the so-called learning rate and n is the number of gradient optimization
steps. Choosing the correct learning rate is crucial as a very small one can lead
to very slow convergence, whereas a very big one can lead to complete divergence
(Figure 4.10). For this reason, several approaches have been proposed to adapt the
learning rate online (e.g., ADADELTA [Zeiler 2012]). To make the effect of choosing
the learning rate less important, the aspect of momentum has been introduced in
many cases. In practice, instead of the previous update, we use the following:

Gn+1 = �Gn + (1− �) ∂J
∂�

�n+1 = �n + �Gn+1 (4.27)

In essence, the gradient update takes information from the previous steps,
instead of relying only on the current estimate and thus avoiding big fluctuations.

Training with big datasets Usually we have very big datasets to train an NN, that
is, N � 10,000. In this case, computing the forward and backward passes can be
very time-consuming. For this reason, we usually split the dataset into batches: in

6. https://github.com/tiny-dnn/tiny-dnn

https://github.com/tiny-dnn/tiny-dnn
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essence, a batch is subset of the whole dataset. Usually, the size of each batch is
relatively small (i.e., 16 − 64). Working with batches instead of the whole dataset,
creates two additional questions/issues: (a) how to generate these batches, and (b)
how to use gradient descent when we have access to just an approximation of the
gradient7. For the first issue, the solution is rather simple: either we draw ran-
domly (with replacement) data points from the whole dataset or we first shuffle
the dataset and then we select sequential chunks of data until the whole dataset
is used (and then we go back to the start). For the second issue, more advanced
and sophisticated optimization algorithms, like Adam [Kingma and Ba 2014], are
devised for solving this stochastic gradient descent problem.

4.2.1.3 Gaussian Processes
So far we have seen parametric models, which have limited capacity (defined
by their structure and number of parameters). On the contrary, non-parametric
models have potentially infinite capacity (usually limited by practical implemen-
tations). One of themost successful non-parametricmodels forML isGP. AGP is an
extension of multivariate Gaussian distribution to an infinite-dimension stochas-
tic process for which any finite combination of dimensions will be a Gaussian
distribution [Rasmussen and Williams 2006]. More precisely, it is a distribution
over functions, completely specified by its mean function, m(·) and covariance
function, k(·, ·) and we write:

f̂ (x) ∼ GP(m(x), k(x, x)) (4.28)

GPs fall into the non-parametric class of models. Assuming X = {x1, . . . , xN},
Y = {y1, . . . , yN} is a set of observations, like in Section 4.2.1, we can query the GP
at a new input point x+ as follows:

p(f̂ |X,Y , x+) = N (µ(x+),�2(x+))

µ(x+) = kTK−1Y

�2(x+) = k(x+, x+)− kTK−1K (4.29)

where the kernel vector is defined as k = [k(x1, x+), . . . , k(xN , x+)] and the kernel
matrix is computed as follows:

K =


k(x1, x1) . . . k(x1, xN)

...
. . .

k(xN , x1) . . . k(xN , xN)

+ �2nI (4.30)

where �n is the noise variance.

7. Because of the batches, we do not have accurate values of the gradient.
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Figure 4.11 Gaussian process regression with different kernels.

The covariance function or kernel, k, is a measure of similarity between input
points. The most widely used kernels are the following:

• Squared exponential kernel: k(x, x′) = �exp
( ||x−x′||2

2l2
)

• Matérn-class kernel: k(x, x′) = � 21−ν

Γ(ν)

(
√
2ν ||x−x

′||
l

)ν
Kν

(
√
2ν ||x−x

′||
l

)
where ν is usually either 3

2 or 5
2 and Kν is a modified Bessel function

[Rasmussen and Williams 2006].

• Rational quadratic kernel: k(x, x′) = �
(
||x−x′||2
2al2

)−a
Of course, the choice of a kernel will affect the shape of the predictions of the

GP. In Figure 4.11, we show an example where we fit two GPs with different kernels:
one with the squared exponential kernel and one with a third-order polynomial
kernel8; we can see that the fitted functions are very different in each case.

Interestingly, GPs provide an analytical solution to the regression problem.
However, when defining our kernel there are a few parameters that we can tune
and greatly affect the shape of the GP. For example, in Figure 4.12, we see how a GP
with the squared exponential kernel completely changes shape when we change
the l parameter of the kernel. In order to identify the optimal hyperparameters, we
need to define a loss function and minimize it. We have a lot of options, but the
most common and successful ones are the leave-one-out-cross-validation, and the

8. Polynomial kernel: k(x, x′) = �[x, x2, x3]T [x′, x′2, x′3].
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Figure 4.12 Gaussian process regression with the same kernel, but different hyperparameters.

likelihood [Rasmussen and Williams 2006]. We will focus here on the maximum
likelihood estimation (MLE), where we define the log marginal likelihood and we
maximize it:

logp(Y |X,�kernel) = − 1
2
YTK−1Y − 1

2
log|K| − N

2
log2� (4.31)

where �kernel are the hyperparameters of the kernel: the kernel matrix K depends
on them.

The three terms of the marginal likelihood have interpretable roles: (a)
−YTK−1Y/2 is the only term involving the observed targets and thus the data-fit,
(b)−log|K|/2 is the complexity penalty depending only on the covariance function
and the inputs, and (c) Nlog(2�)/2 is a normalization constant.

To set the hyperparameters bymaximizing themarginal likelihood, we seek the
partial derivatives of the marginal likelihood with respect to the hyperparameters:

∂logp(Y |X,�kernel)
∂�i

= 1
2
YTK−1

∂K
∂�i

K−1Y − 1
2
tr(K−1 ∂K

∂�i
)

= − 1
2
tr
(

(��T − K−1) ∂K
∂�i

)
, where � = K−1Y (4.32)

In order to quickly experiment with GPs, using an optimized library is recom-
mended. For example, one can use limbo [Cully et al. 2018] in C++, and GPy9 in
Python.

9. http://github.com/SheffieldML/GPy

http://github.com/SheffieldML/GPy
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Class A Class B

Figure 4.13 Classification example.

4.2.2 Classification
As we have already stated, classification algorithms try to find themapping f : x→
y from the input variables x ∈ RD to the discrete or categorical output variables y.
More formally, we assume access to a dataset of the form: {(x1, y1), . . . , (xN , yN)},
where N is the number of samples, and yi = f (xi). We usually encounter two
different forms of the output variables: (a) yi ∈ Z where each integer num-
ber defines a class, and (b) yi is a one-hot vector of length K, where K is the
number of classes. A one-hot vector is a vector with all zeroes except from one
element.

The goal of a classification algorithm, like in regression, is not only tominimize
the error from the observed samples, but also to generalize to unseen datapoints.
Figure 4.13 shows an example of classification where using the observed samples
we can split the space with a line that separates class A from class B.

4.2.2.1 Naïve Bayes
NB is a category of techniques for constructing classifiers [Maron 1961]. There exist
many variations on how to learn such classifiers, but NB classifiers make a com-
mon assumption: the value of a particular feature is independent of the value of any
other feature, given the class variable. More formally, NB is a probabilisticmodel that
assigns probabilities to each possible class k as follows:

p(Ck|x = {x1, . . . , xD}) (4.33)
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Note that x ∈ RD is one sample, and we use the notation xi to denote the ith
element of the vector x. Using Bayes’ theorem (Equation 4.8), we can re-write this
conditional as:

p(Ck|x) = p(x|Ck)p(Ck)
p(x) (4.34)

In practice, we only care about the numerator of this fraction, as the denomina-
tor does not depend onC and the xi are given: hence, the denominator is just a con-
stant. The numerator, now, is equivalent to the joint probability (see Equations 4.2
and 4.7):

p(x|Ck)p(Ck) = p(x0, . . . , xD,Ck)

= p(x1|x2, . . . , xD,Ck)p(x2, . . . , xD,Ck)

= p(x1|x2, . . . , xD,Ck)p(x2|x3, . . . , xD,Ck)p(x3, . . . , xD,Ck)

= . . .

= p(x1|x2, . . . , xD,Ck) · · · p(xD−1|xD,Ck)p(xD|Ck)p(Ck) (4.35)

In NB as already discussed we assume that each feature is independent of the
value of any other feature given the class variable. In mathematical terms, this is
equivalent to:

p(xi|xi+1, . . . , xD,Ck) ≈ p(xi|Ck) (4.36)

Note that we used ≈ instead of = as this is only an approximation of the actual
conditional, and really holds only in special cases. Nevertheless, all NB classifiers
make this assumption to simplify themathematical computations. Thus, with this
approximation we can now write the conditional in Equation 4.34 as:

p(Ck|x) = 1
Z
p(Ck)

D∏
i=1

p(xi|Ck) (4.37)

where Z = p(x) =
∑

k p(Ck)p(x|Ck) is a normalization constant that depends only
on x and on prior probabilities.

Once we have the approximation of the conditional in Equation 4.37, we can
construct a classifier as follows:

y = f̂ (x+) = max
k∈{1...K}

p(Ck)
D∏
i=1

p(x+
i |Ck) (4.38)
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Practical considerations In practice, when given a dataset X = {x1, . . . , xN} →
Y = {y1, . . . , yN}, where N is the number of samples, and yi ∈ Ck for k ∈
{1 . . .K}, we need to compute two set of values: (1) p(Ck), and (2) p(xi|Ck) for
i ∈ {1 . . .D}, k ∈ {1 . . .K}. These values will enable us to construct the classi-
fier given by Equation 4.38. p(Ck) can be very easily computed as p(Ck) = NCk

N ,
where NCk is the number of times that class Ck appears in the dataset. Another
way is to have some prior information about the probabilities of the classes: for
example, if the two classes are male and female, then from the general population
we know that p(male) ≈ 0.5 and p(female) ≈ 0.5. On the contrary, calculating

p(xi|Ck) is a bit trickier. If x is discrete or categorical, then p(xi = v|Ck) =
Nvi
Ck

NCk
,

where Nvi
Ck is the number of times the class Ck appears in dataset when xi = v.

When x is continuous, we need to somehow approximate p(xi|Ck) from the avail-
able datapoints. To do so, we can choose any probability distribution: the most
popular choice is the Gaussian distribution. Interestingly, we can approximate
p(xi|Ck) even when x is discrete: multinomial and Bernoulli distributions are the
most popular in this case. To better understand the concepts behind the NB
classifiers, let’s see an example usage. Before we start calculations, it is worth
reminding of the need independence of the input variables. NB results are valid
if the input variables are statistically independent, given the class variable. In
case this does not hold, the results may be not valid. There exist formal meth-
ods for testing statistical independence (see Chapter 2, Section 2.7). In this par-
ticular example, we consider that input variables are statistically independent,
although one might have objections on whether “outlook” and “temperature” are
independent.

Example 4.6 Naïve Bayes classification
In this example, we use the “Play Tennis” dataset (see Table 4.1). The dataset
consists of 14 samples (N = 14), where both the input variables, x, and the out-
put variable, y, are discrete. In particular: x1 = {Sunny, Overcast, Rain}, x2 =
{Hot, Mild, Cool}, x3 = {High, Normal}, x4 = {Weak, Strong}, and y = {Yes, No}.
In this dataset, there exist two labels, “Yes” and “No,” that determine whether we
are allowed to play tennis or not depending on the input variables. Thismeans that
K = 2. We begin by computing the probabilities p(Ck):

p(C1) = p(y = Yes) = NC1
N

= 9
14
≈ 0.64

p(C2) = p(y = No) = 5
14

= 1− p(C1) ≈ 0.36



4.2 Supervised Learning 25

Table 4.1 Play tennis dataset

# Outlook Temperature Humidity Wind Play tennis
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No

We then compute the probabilities p(xi = v|Ck):

p(x1 = Sunny | C1) =
Nvi
Ck

NCk
= 2
9
≈ 0.22

p(x1 = Sunny | C2) = 3
5
≈ 0.6

p(x1 = Overcast | C1) = 4
9
≈ 0.44

p(x1 = Overcast | C2) = 0
5

= 0

p(x1 = Rain | C1) = 3
9
≈ 0.33

p(x1 = Rain | C2) = 2
5

= 0.4

p(x2 = Hot | C1) = 2
9
≈ 0.22

p(x2 = Hot | C2) = 2
5

= 0.4

p(x2 = Mild | C1) = 4
9
≈ 0.44

p(x2 = Mild | C2) = 2
5

= 0.4

p(x2 = Cool | C1) = 3
9
≈ 0.33

p(x2 = Cool | C2) = 1
5

= 0.2
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p(x3 = High | C1) = 3
9
≈ 0.33

p(x3 = High | C2) = 4
5

= 0.8

p(x3 = Normal | C1) = 6
9
≈ 0.66

p(x3 = Normal | C2) = 1
5

= 0.2

p(x4 = Weak | C1) = 6
9
≈ 0.66

p(x4 = Weak | C2) = 2
5

= 0.4

p(x4 = Strong | C1) = 3
9
≈ 0.33

p(x4 = Strong | C2) = 3
5
≈ 0.6

Now that we have computed all these probabilities, we can classify new sam-
ples. Let’s assume that we have the following: x+ = [Sunny, Cool, High, Strong].
We should optimize Equation 4.38 to see which class this new sample belongs to.
We need to compute the following values:

vC1 = p(C1)
D∏
i=1

p(x+
i |C1)

= p(C1)p(x1 = Sunny|C1)p(x2 = Cool|C1)p(x3 = High|C1)p(x4 = Strong|C1)

= 0.64× 0.22× 0.33× 0.33× 0.33 ≈ 0.00506

vC2 = p(C2)
D∏
i=1

p(x+
i |C2)

= p(C2)p(x1 = Sunny|C2)p(x2 = Cool|C2)p(x3 = High|C2)p(x4 = Strong|C2)

= 0.36× 0.6× 0.2× 0.8× 0.6 ≈ 0.02074

Finally we can also compute the proper probabilities (although not needed
since the denominator is constant):

p(C1|x+) = vC1
vC1 + vC2

= 0.00506
0.00506+ 0.02074

≈ 0.196

p(C2|x+) = vC2
vC1 + vC2

= 0.02074
0.00506+ 0.02074

≈ 0.804

Since p(C2|x+) > p(C1|x+), we classify x+ as being in the class C2 and thus the
conditions are not suitable for playing tennis.
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4.2.2.2 Support Vector Machines
SVMs [Guyon et al. 1993, Cristianini and Shawe-Taylor 2000, Hsu et al. 2003] is a
supervised ML algorithm which can be used for both classification or regression
challenges10. However, it is mostly used in binary classification problems, and thus
we will present this version. By binary classification, we mean classification prob-
lems where only two possible classes are available and each input can correspond
only to one class.

The objective of SVMs is to find a hyperplane in anNf-dimensional space (where
Nf is the number of features) that distinctly classifies the data points in two classes.
To do so, there exist many possible hyperplanes that we can choose. Our objective
is to find a plane that has the maximum margin, that is, the maximum distance
between data points of both classes to the hyperplane. Maximizing themargin dis-
tance provides some stronger confidence that our classifier will generalize to new
data points.

To begin with, let’s consider that we have a dataset X = {x1, . . . , xN}, Y =
{y1, . . . , yN}, where xi ∈ RD and y ∈ {−1, 1}: a value of+1 means that it is classified
in the first class and a value of −1 means that it is in second class.

Hard-margin SVMs If the data points are linearly separable, we can select two
parallel hyperplanes that separate the two classes of data, so that the distance
between them is as large as possible. The region boundedby these twohyperplanes
is called the margin, and the maximum-margin hyperplane is the hyperplane that
lies halfway between them. We can describe these hyperplanes by: wTx − b = 1
for the first class and wTx − b = −1 for the second class. According to geometry
(Figure 4.14), the distance between these two hyperplanes is 2

‖w‖ , so to maximize
the distance between the planes we want to minimize ‖w‖. We also want to pre-
vent data points from falling into the margin, and thus we add the following con-
straints: yi(wTxi − b) ≥ 1, for all 1 ≤ i ≤ N. More formally, we have the following
optimization problem:

min
w,b
‖w‖2 (4.39a)

subject to yi(w
Txi − b) ≥ 1,

i = 1, . . . N (4.39b)

We can optimize this problem with any off-the-shelf quadratic programming
(QP) solver, as the objective is of quadratic formwith linear constraints with respect

10. When used in regression problems, we use the name support vector regression.
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Figure 4.14 Support vector machines for binary classification. Image source: https://en.wikipedia.
org/wiki/File:SVM_margin.png.

to w and b. A few examples of available QP solvers are: qpOASES11, osqp [Stellato
et al. 2017]12, GUROBI13, andMOSEK14. Once we find the bestw and b, our classifier
can be defined as f̂ (x) = sgn(wTx− b), where sgn is the sign function.

Soft-margin SVMs If the data points are not exactly linearly separable (e.g.,
because of noise), we change a bit the optimization problem and we have the
following:

min
w,b

1
N

N∑
i=1

max
(
0, 1− yi(w

Txi − b)
)

+ �‖w‖2 (4.40)

where � handles the trade-off between increasing the margin size and ensuring
that the xi lie on the correct side of the margin15. We call this soft-margin because
the hard constraints in Equation 4.39 are put in the objective function, and thus
become soft. For sufficiently small values of �, the second term in the loss function

11. https://github.com/coin-or/qpOASES

12. https://osqp.org/

13. http://www.gurobi.com

14. https://docs.mosek.com/9.0/toolbox/index.html

15. This is just one formulation of the soft-margin SVMs. Please refer to Hsu et al. [2003] for more
information.

https://en.wikipedia.org/wiki/File:SVM_margin.png
https://en.wikipedia.org/wiki/File:SVM_margin.png
https://github.com/coin-or/qpOASES
https://osqp.org/
http://www.gurobi.com
https://docs.mosek.com/9.0/toolbox/index.html
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will become negligible, hence, it will behave similar to the hard-margin SVM, but
will still learn if a classification rule is viable or not. We can still optimize this
objective with any of-the-shelf QP solver.

Non-linear classification So far, the classifier that we have defined is a linear one:
in essence, we can only use it if the data points are (more or less) linearly sepa-
rable. To make an SVM classifier suitable for non-linear classification, instead of
performing the classification in the original space, we transform the input space
using the kernel trick [Boser et al. 1992] and perform the classification in this trans-
formed space. This allows us to perform linear classification in the transformed
space that can potentially be non-linear in the original space. In essence, we define
the following optimization:

min
w,b

1
N

N∑
i=1

max
(
0, 1− yi(w

T�(xi)− b)
)

+ �‖w‖2 (4.41)

Here training vectors xi aremapped into a feature space (possibly higher dimen-
sional) by the function �. SVM finds a linear separating hyperplane with the max-
imal margin in this feature space. Furthermore, we define the kernel function as
k(xi, xj) = �(xi)T�(xj). We can use any kernel function, but the most widely used
ones are:

• Linear: k(xi, xj) = xTi xj

• Polynomial: k(xi, xj) = (γxTi xj + r)d, γ > 0

• Radial basis function (RBF): k(xi, xj) = exp(−γ‖xi − xj‖2), γ > 0

• Sigmoid: k(xi, xj) = tanh(γxTi xj + r)

where γ, r, d are parameters of the kernels.

4.2.2.3 Decision Trees
In this category of algorithms, the produced model is a tree, called a decision tree
(DT) [Rokach and Maimon 2005]. A DT is a directed tree having the following
characteristics:

• There is a node, called a root, which has no incoming branches

• Each internal node has exactly one incoming branch, two or more outgoing
branches and is labeled with the name of a feature xi

• Each leaf node (or decision node) is labeled with the name of a class Ck

• Each branch, descending from an internal node, is usually labeled with one
of the possible values of the node’s feature, in case it has nominal values, or
a value range, in case it is numeric.
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A DT is an effort to divide search space into orthogonal regions, following a
“divide and conquer” strategy. In other words, it tries to distribute the samples of
the (training) dataset into subsets that contain points of different classes. A DT is
produced from a given (training) dataset in such a way that it can generalize. In
most cases, a top-down process is followed. This means that initial dataset is split
in two or more subsets, based on one of the input features, in such a way that the
subsets are as homogeneous as possible, that is, their samples belong to as less
different classes as possible. The target is to end up to sets with samples of the
same class. So, the process iterates until this is achieved or some other criterion is
met. The leaves typically include samples of the same class, except if for general-
ization reasons, the process stops before it is achieved, and the dominant classes
are chosen as leaf labels.

In the process of creating a DT, there are some important notions, like the split-
ting features, the splitting predicates, the splitting criterion, and the stopping criterion.
The splitting features are those that are selected as labels of the nodes in the DT.
Notice that may not all features of a dataset are selected as nodes in the DT. Thus,
different subsets of features may lead to different DTs. Also, the features selection
order plays an important role in the quality of theDT. In linewith this an important
issue is which feature will be selected to be the root of the DT.

The selection of features is based on a splitting criterion. A splitting criterion
is a measure of the quality of a feature determining whether it is going to be
used as a splitting feature at some node or not. There are various splitting crite-
ria, like Information Gain, Gini Index, DKM, Gain Ratio, and so on [Rokach and
Maimon 2005]. When a feature is selected it becomes the label of the current
node. Each node is a decision point (i.e., we perform some test), where branches
go out of it depending on the outcome of the decision. Those branches repre-
sent possible outputs of the test and split the set corresponding to the node
into as many subsets as its branches. Each instance (example) of the dataset fol-
lows one of the branches towards the corresponding child nodes. The test may
be an equality test (e.g., between a value of the parent node feature and the cor-
responding value in the example) or an inequality test (e.g., whether the corre-
sponding value in the example is within a range of values of the parent node
feature) or something more complicated. Each branch is labeled with what is
called a splitting predicate, which denotes the corresponding test output. When
a splitting predicate involves only the corresponding feature, we have the case of
a univariate split. If it involves more than one feature, it is called a multivariate
split.

The stopping criterion concerns the point where a DT algorithm stops. It is rea-
sonable to expect that the algorithm stops when all training data are classified by
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Algorithm 4.1 Basic pseudocode for decision trees

CreateDT(X,Y)
1: T ← ∅
2: Determine the best splitting feature, xi
3: Add a node to T and label it with the best splitting feature
4: Add to T one branch per splitting predicate vdi of xi
5: for d = 1→ V {V is the number of values that xi can take}
6: (X′,Y ′)← ApplyPredicate(xi = vdi )
7: if stopping point reached for this path
8: T ′ ← leaf node with appropriate class
9: else
10: T ′ ← CreateDT(X′,Y ′)
11: endif
12: Add T ′ to T
13: endfor
14: return T

the tree. However, this is not usually the case. For example, the algorithmmay stop
earlier to avoid the creation of big trees or to avoid the overfitting phenomenon. So,
the decision about when to stop concerns a balance between accuracy, algorithm
performance, and the generalization capability of the tree.

A high-level pseudocode for a DT is described in Algorithm 4.1. Combina-
tions of different splitting and stopping criteria create a variety of DT algorithms.
Some of well-known algorithms are: ID3 [Quinlan 1986], C4.5 [Quinlan 2014], CART
[Breiman et al. 1984], and so on.

ID3 Algorithm The ID3 (Iterative Dichotomizer 3) [Quinlan 1986] requires that all
the features have nominal (or categorical) values. The splitting predicates are the
values of the features and test equality. Its splitting criterion is information gain.
Information gain is based on the notion of entropy [Quinlan 1987]. Entropy denotes
the degree of non-homogeneity of a dataset. If all samples in a dataset belong to
the same class, then entropy equals zero. For discrete values that ID3 handles, the
entropy of a random value C is defined as follows: E(C) = −

∑K
i=1 p(Ci)logp(Ci),

where p(Ci) is the probability of C taking the value Ci and K is the number of values
that C can take. In our setup, we assume that we represent the possible classes by a
random variable and we use the following notation E(X,Y) = −

∑K
i=1 p(Ci)logp(Ci)

to denote the entropy of this random variable given a dataset (X,Y), where p(Ci) =
Ni
Y

NX
,NX is the number of elements inX, andNi

Y is the number of times the class value



32 Chapter 4 Machine Learning Basics

Ci appears in the dataset (X,Y). We also define the information gain of a dataset
as follows:

IG(X,Y , xi) = E(X,Y)−
V∑
d=1

Nvdi
NX

E(X−vdi ,Y−vdi ) (4.42)

where Nvdi is the number of times that xi takes the value v
d
i in the dataset, V is the

number of values that xi can take, and (X−vdi ,Y−vdi ) is the dataset (X,Y)without the
samples that xi = vdi .

Example 4.7 ID3 example
In this example, we use again the “Play Tennis” dataset like in the NB example.
Let’s remember that:

p(C1) = p(y = Yes) = 9
14
≈ 0.64

p(C2) = p(y = No) = 5
14
≈ 0.36

In order to decide which feature to split along, we have to compute the infor-
mation gains:

IG(X,Y , x1) = E(X,Y)−
V∑
d=1

Nvd1
NX

E(X−vd1 ,Y−vd1 )

= E(X,Y)−
(
Nx1=Sunny

N
E(X−x1=Sunny,Y−x1=Sunny)

+ Nx1=Overcast

N
E(X−x1=Overcast,Y−x1=Overcast)

+Nx1=Rain

N
E(X−x1=Rain,Y−x1=Rain)

)
By doing the calculations, we arrive at:

IG(X,Y , x1) = 0.074

IG(X,Y , x2) = 0.0087

IG(X,Y , x3) = 0.04565

IG(X,Y , x4) = 0.0144

Comparing the information gains, it is clear that x1 (named “Outlook,” see
Table 4.1) has the largest information gain and is selected as the root of the tree.
After that, the dataset (X,Y) is split into three subsets16, based on equality test

16. These are three because x1 can take three values.
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Outlook

?? Yes

= Sunny

= Overcast

= Rain

|X| = 5 |X| = 5

|X| = 14

|X| = 4

E(X,Y) = 0

Figure 4.15 Decision tree for Play Tennis dataset at first stage with ID3.

Outlook

Yes

= Sunny

= Overcast

= Rain

Humidity Wind

Yes No Yes No

= Normal = High = Strong= Weak

Figure 4.16 Final decision tree for the Play Tennis dataset with ID3.

in relation to the three possible values of “Outlook,” which become the splitting
predicates of the root branches (see Figure 4.15). The same process is followed for
each of the two remaining internal nodes and their subsets and finally the tree of
Figure 4.16 is produced.

We can notice that one of the features (x2—“Temperature”) is not necessary
for constructing the “Play Tennis” classification (tree) model. Now, the model
can be used for classifying a new example, not included in the training set. Let’s
assume that we want to classify the same point as we did in the NB example:
x+ = [Sunny, Cool, High, Strong]. If we put it on the root of the tree and pass it
through the tree, we end up classifying it in the second class (C2—“No”). Thus,
the conditions are not ideal to play tennis. We see that we arrived at the same
conclusion of the NB classifier.

C4.5 Algorithm One of the problems of ID3 is that it creates problems in cases
with variables that can takemany values (e.g., “month_day”may take 30–31 values).



34 Chapter 4 Machine Learning Basics

ID3moves them to the root, because entropy gets low, hence information gain gets
large, and the produced tree becomes very wide, which is not desirable. To remedy
this, C4.5 [Quinlan 2014] introduces a different splitting criterion, called the Gain
Ratio, which is defined as follows:

GR(X,Y , xi) = IG(X,Y , xi)
SplitInfo(X,Y , xi)

SplitInfo(X,Y , xi) = −
V∑
d=1

Nvdi
NX

log
(Nvdi
NX

)
(4.43)

where Nvdi is the number of times that xi takes the value v
d
i in the dataset (X,Y), V

is the number of values that xi can take, andNX is the number of samples in X. The
main idea is to penalize the big information gain that variables with many values
have, and thus, try to balance between selecting features with big information gain
and features with a smaller number of possible values.

Tree pruning In order to avoid overfitting and intractability, most DT approaches
perform some kind of tree pruning. In essence, tree pruning reduces the size of
DTs by removing sections of the tree that provide little power to classify instances
[Quinlan 2014]. We briefly discuss two of them:

• Reduced error pruning: In this approach, the available data is separated into a
training set and a validation set. A DT is produced based solely on the training
set. We start removing nodes in a bottom-up manner. Every node is candi-
date for pruning. Pruning a node means pruning the subtree having it as a
root andmaking it a leaf, labeled with the class ofmost of the examples asso-
ciated with the node. A node is finally pruned if the resulted tree is better
than previous one, in terms of accuracy (the number of correctly predicted
examples) in the validation set. Pruning continuously until no better tree is
produced.

• Rule post-pruning: In this approach, a DT is produced based solely on the
training set. Then, it converts the tree into an equivalent set of produc-
tion rules [Grosan and Abraham 2011], by creating one rule for each path
from the root to a leaf. Afterwards, it prunes conditions of rules one-by-one
making them more general, and evaluates the system, in terms of accuracy,
after each condition removal. If a condition pruning results in better accu-
racy, it remains, otherwise it’s put back. The process stops if no further
improvement is achieved and the rules are ordered based on the estimated
accuracy.
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4.2.2.4 Neural Networks
In Section 4.2.1.2 we defined what feedforward NNs are and saw how to use them to
perform regression. In this section, we will investigate how we can perform binary
and multi-class classification with feedforward NNs.

To perform classification with NNs, we only need to change the loss function
that we use to optimize the weights of the NN. This in turn changes the interpre-
tation of output of the NN, and thus we would also need to adapt the activation
function of the last layer.

More formally, let’s assume a dataset of the form X = {x1, . . . , xN} → Y =
{y1, . . . , yN}, where N is the number of samples, yi ∈ Ck for k ∈ {1 . . .K} and K is
the number of classes. We further assume that we have a feedforward NN ofM lay-
ers, like in Section 4.2.1.2. We will handle the binary and multi-class classification
differently.

In both cases, when dealing with discrete input variables, we need to transform
the inputs appropriately in order for our NN to learn effectively. In particular, we
usually encode each discrete input variable as a one-hot vector of length V (where
V is the number of values of the variable), that is, a vector with all zeroes except
from the row of the value that is selected.

Binary classification As we saw already, in binary classification we assume the
output variable y ∈ {0, 1} or y ∈ {−1, 1}. In NNs, we usually take the first case and
assume that the output of the NN is the probability of the input x being classified
as y = 1. For this reason, we usually only use one output neuron, and its activa-
tion function is the sigmoid because sigmoid(x) ∈ [0, 1]. For the loss function we
usually use the cross entropy loss:

H(�) = − 1
N

N∑
i=1

yilog(p(yi)) + (1− yi)log(1− p(yi)) (4.44)

where we write the output of the NN f̂ (x|�) as p(yi) to emphasize that the output
is interpreted as a probability. So, this is it! Now you can use back-propagation to
adapt the weights of the NN and perform binary classification with NNs. Once a
new input, x+, is given we pass it through the network to get f̂ (x+|�) = p(y+). If
p(y+) ≥ 0.5, x+ is classified as +1, and as 0 otherwise.

Example 4.8 Neural network binary classification
In this example,weuse again the “PlayTennis” dataset (seeTable 4.1) like in thepre-
vious examples. We remind that the dataset consists of 14 samples (N = 14), where
both the input variables, x, and the output variable, y, are discrete. In particular:
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Table 4.2 Play tennis dataset transformed for NN classification

# Outlook Temperature Humidity Wind Play tennis
1 1 0 0 1 0 0 1 0 1 0 0
2 1 0 0 1 0 0 1 0 0 1 0
3 0 1 0 1 0 0 1 0 1 0 1
4 0 0 1 0 1 0 1 0 1 0 1
5 0 0 1 0 0 1 0 1 1 0 1
6 0 0 1 0 0 1 0 1 0 1 0
7 0 1 0 0 0 1 0 1 0 1 1
8 1 0 0 0 1 0 1 0 1 0 0
9 1 0 0 0 0 1 0 1 1 0 1
10 0 0 1 0 1 0 0 1 1 0 1
11 1 0 0 0 1 0 0 1 0 1 1
12 0 1 0 0 1 0 1 0 0 1 1
13 0 1 0 1 0 0 0 1 1 0 1
14 0 0 1 0 1 0 1 0 0 1 0

x1 = {Sunny, Overcast, Rain}, x2 = {Hot, Mild, Cool}, x3 = {High, Normal},
x4 = {Weak, Strong}, and y = {Yes, No}.

As discussed earlier, since we are performing binary classification, we use only
one output neuron with a sigmoid activation function that represents the proba-
bility that the input is classified as “Yes.” Thus, we set yi = 1 for every sample i that
is classified as “Yes,” and yi = 0 otherwise. Moreover, we need to transform the dis-
crete input variables to one-hot vectors for our NN to learn effectively. In Table 4.2
we find the transformed dataset. It is easy to verify that the input to the NN is a
10-D binary vector. To learn with this dataset, we devise a very simple feedforward
NN with one hidden layer with the ReLU activation function and two hidden neu-
rons (we remind the reader that the activation function of the output layer is the
sigmoid).

After training this networkwith this dataset for∼1,000,000 iterations using sim-
ple gradient descent, we get the a model that has 100% accuracy on the training
dataset. Now, if we want to query the network with a new sample, for example,
x+ = [Sunny, Cool, High, Strong], we need to first transform it to the proper for-
mat. The transformed input is x′+ = [1, 0, 0, 0, 0, 1, 1, 0, 0, 1]. Passing this input
through the network we get a value that is very close to zero, and thus, we classify
it as “No” matching the result of the previous examples.

Multi-class classification In multi-class (K > 2) classification, we proceed within
the same lines of thinking, and use one output neuron per class. The kth output
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neuron will correspond to the probability that the input, x, is classified in the kth
class. Using this intuition, we devise a dataset so that yi is a one-hot vector of length
K, where it is all zeroes except from row of the class that this sample corresponds
to. Since we are dealing with probabilities and we assume that each label can only
correspond to one class, we want that

∑K
k=1 p(y = Ck|x) = 1. To ensure this, we

usually use the softmax activation function in the last layer of the NN:

softmax(j) = ep(y=Cj|x)∑K
k=1 ep(y=Ck|x)

, for j = 1, . . . ,K (4.45)

Practically, the input to the softmax activation function is the whole output
layer, as a vector of length K, and the output is a vector of the same length with
the values at each row, j, computed with Equation 4.45. Lastly, we need to adapt the
cross-entropy loss function for themulti-class case:

H(�) = − 1
N

N∑
i=1

yilog(p(yi|xi)) (4.46)

where p(yi|xi) is the predicted probability that xi belongs to the class yi. Using this
machinery, enough data, and computation time, you should be able to achieve
state-of-the-art multi-class classification results even on demanding datasets.

4.3 Unsupervised Learning: Clustering
In this section, wewill discuss about twoUL approaches and showhow to use them
to perform clustering. We remind the reader that we assume that we have access to
a dataset of the formD = {x1, . . . , xN}, and the goal is to learn amapping f : X → Y ,
where f canbe seen as a function that assigns to eachdata point a cluster. Although,
there exist ways to automatically discover the number of clusters (e.g., the Bayesian
information criterion [BIC] [Neath and Cavanaugh 2012]), in this section we will
assume the number of clusters K to be fixed.

4.3.1 K-means
K-means clustering [Lloyd 1982] is a method for clustering N observations into K
clusters. The main objective of K-means is to assign each sample to the cluster
with the nearest mean. This results in a partition of the space that is very simi-
lar to a Voronoi tessellation of the space [Aurenhammer 1991]. The overall problem
isNP-hard, but wewill see a heuristic but efficient algorithm that can converge very
quickly to a local optimum.

K-means is usually implemented as an iterative algorithm that tries to make
the inter-cluster data points as similar as possible while also keeping the clusters
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as different as possible. It assigns data points to a cluster such that the sum of the
squared distance between the data points and the cluster’s centroid (arithmetic
mean of all the points that belong to that cluster) is minimized. By similar and
different, we mean close and far respectively using an appropriate metric (e.g.,
Euclidean distance).

The K-means algorithm operates as follows:

1. Select the number of clusters K

2. Initialize the cluster centroids

3. Compute the distances between each data point and all centroids

4. Assign each point to the closest centroid

5. Compute the new centroids by averaging all the points that belong to them

6. Go back to 3, until there is no change in the centroids

This procedure is very close to the expectation–maximization (EM) algorithm
[Dempster et al. 1977] that we will see in the next subsection. In practice, this pro-
cedure will converge to the closest local minimum, and thus we usually execute
several K-means runs and take the best one, that is, the one that produces the
smallest sum of distances.

In Figure 4.17, an example run of K-means is shown. Here x ∈ R2 and we gen-
erate 1,300 random points in such a way that there exist three main clusters, but
also considerable noise. We show the computed centroids with stars and color the
points in each cluster with different colors. Of course, the goal is to cluster the data
in K = 3 clusters. We see how K-means moves the centroids in such a way that in
the end it discovers the underlying structure of the data.

4.3.2 Gaussian Mixture Models
A GMM is a probability distribution. Unlike unimodal distributions, like the Gaus-
sian, thatmodel a single peak, GMMs canmodel distributionswithmultiple peaks.
In essence, a GMM is a sum of several Gaussians together. If we have a sufficient
number of Gaussians, and adjust their parameters, almost any continuous density
can be approximated.

Since a GMM is a sum of probability distributions, we can use it as a clustering
algorithm by comparing the probabilities of a new data point belonging to each of
the sub-distributions. More formally, if we use K Gaussians, a GMM is defined as:

p(x) =
K∑
k=1

�kN (x|µk,Σk) (4.47)
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Figure 4.17 K-means example.
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where�k ∈ R,µ, x ∈ RD, andΣ ∈ RD×D. As a quick reminder, the pdf of a Gaussian
distribution is defined as (also defined in Equation 4.13):

N (x|µ,Σ) = 1
(2�)D/2Σ1/2 exp

(
− 1
2

(x− µ)TΣ−1(x− µ)
)

(4.48)

Assuming access to a dataset of the form X = {x1, . . . , xN} we perform again
maximum likelihood optimization to find the best parameters �k, µk and Σk for
k = 1, . . . ,K. In this case, we will use the EM algorithm [Dempster et al. 1977] to
do so. This is similar to the K-means procedure and is an iterative algorithm with
two steps per iteration: the expectation (E) step and themaximization (M) step. The
update of theGMMparameters fromanE-step followed by anM-step is guaranteed
to increase the log-likelihood function:

logp(X|µ,Σ,�) =
N∑
i=1

log

(
K∑
k=1

�kN (x|µk,Σk)
)

(4.49)

The procedure of the EM algorithm for optimizing a GMM is a follows:

1. Initialize�k,µk andΣk; usually K-means (Section 4.3.1) can give a good initial
estimate

2. Perform the E-step: Evaluate the responsibilities using the current parameter
values

γ(zik) = �kN (xi|µk,Σk)∑K
j=1 �jN (xi|µj,Σj)

3. Perform theM-step: Re-estimate the parameters using the new responsibili-
ties

µnew
k = 1

Nk

N∑
i=1

γ(zik)xi

Σnew
k = 1

Nk

N∑
i=1

γ(zik)(xi − µnew
k )(xi − µnew

k )T

�new
k = Nk

N

where Nk =
∑N

i=1 γ(zik)

4. Evaluate the log-likelihood given by Equation 4.49 and check convergence

5. Go back to 2 until convergence
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Figure 4.18 Gaussian mixture model example.

Once the GMM is computed, we have K clusters where the center of each cluster
isµk and each new data point x+ is associated to a cluster using the following rule:

Cx+ = max
k∈{1...K}

γ(z+k)

= max
k∈{1...K}

�kN (x+|µk,Σk)∑K
j=1 �jN (x+|µj,Σj)

(4.50)

In Figure 4.18, we see the result of training a GMM with three sub-models
(K = 3) using EM on the same dataset as the one for K-means. We see that GMMs
are also capable of discovering the underlying structure of the data, and place the
means of the sub-models (Gaussians) in a similar way to the centroids of K-means.
Moreover, GMMs gives us also the actual probability of a given input belonging
to a certain cluster. In Figure 4.18 we set the � value of each point proportionally
to the value of Equation 4.50. In essence, for points that are more transparent, we
are less certain in which class they belong to. Essentially, GMMs let you determine
the structure of the data (see the contour lines in Figure 4.18), without necessar-
ily associating each sample with a cluster. One can think of GMMs as generalizing
K-means clustering to incorporate information about the covariance structure of
the data as well as the centers of the latent Gaussians.

4.4 Practical Aspects
So far we have seen mostly theoretical aspects of several ML algorithms, but when
applying these algorithms on real data a few considerations need to be taken into
account. Overall, when applying ML algorithms for SL on real data, we usually fol-
low the pipeline illustrated in Figure 4.19. We begin by formalizing the problem
and performing some pre-processing on the data (Section 4.4.1). Then, we select
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Figure 4.19 Machine learning pipeline for supervised learning.

or learn the features that are suitable to be used (Section 4.4.2) and we choose the
learning algorithm. Then, we enter a loop where we train our algorithm, evaluate
it (Section 4.4.4), and perform model selection (or hyperparameter optimization)
(Section 4.4.5) in order to find the best hyperparameters (and/or algorithm) to per-
form the task at hand. Once we are satisfied with the result, we return the learned
model.

4.4.1 Data Preprocessing
When gathering data from real processes, it may often not be in a suitable for-
mat for ML algorithms to operate on. Apart from re-structuring the data to make it
in proper form (e.g., removing NULL values, filling missing values, etc.), some ML
algorithmsworkbetter if the data isnormalized or standardized. Let’s assumeaccess
to a dataset X = {x1, . . . , xN}, where N is the number of samples, and xi ∈ RD. We
say that we normalize the dataset when:

xi = xi −min(X)
max(X)−min(X) (4.51)

In essence,normalization scales all thepoints in thedataset to [0, 1], while retain-
ing their proportional range to each other. On the other hand, we say that we
standardize the dataset when:
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xi = xi − µX

�X

µX = 1
N

N∑
i=1

xi

�X ∈ RD, with �
j
X = 1

N

N∑
i=1

(xji − µ
j
X)2 (4.52)

where xji is the jth element of the ith sample in the dataset. In essence, standard-
ization transforms the data in order to have a mean of zero and standard deviation
(SD) of 1. In otherwords, theywill look like theywere drawn froma standardnormal
distribution to the ML algorithm.

4.4.2 Feature Engineering
In ML, a feature is an individual measurable property or characteristic of a phe-
nomenon being observed. Features are the most important ingredient of ML. In
our formalization, features are the input variables to the algorithm, xi.

Feature engineering is the process of using domain and general knowledge to
create features thatwill assist anMLalgorithm. It is amostlymanual process and is
one of themost important arts inML. Theneed formanual feature engineering can
be obviated by automated feature learning. Feature selection [Guyon and Elisseeff
2003] is the process of selecting a subset of the original feature set, that includes the
most important and relevant features. It is performed before the learning method
is executed (Figure 4.19).

To identify themost important and relevant features, UL algorithms are usually
applied (Section 4.3). The most common and effective way of performing auto-
mated feature engineering isdimensionality reduction. A fewof themostwidely used
algorithms for dimensionality reduction are principle component analysis (PCA)
[Pearson 1901, Hotelling 1933], non-negative matrix factorization (NNMF) [Sra and
Dhillon 2006, Tandon and Sra 2010], linear discriminant analysis (LDA), and NN
autoencoders [Hinton and Salakhutdinov 2006].

4.4.3 Overfitting
In ML, parametric models, like for example, NNs (Section 4.2.1.2), can suffer from
overfitting. Overfitting is a problem when the regression function fits the train-
ing data “too well,” but does not generalize to unseen test data (see Figure 4.20).
Overfitting typically occurs if the underlying model (or its parameterization) is
overly flexible and expressive. Underfitting is when the regression function fits
the training data very badly (see Figure 4.20). Underfitting usually occurs because
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Figure 4.20 Over- and under-fitting in machine learning.

of premature convergence of the optimization process or because the underlying
model is not expressive enough. In NN learning, we usually add a regularization
term in the loss function [Girosi et al. 1995] or use a technique named dropout
[Srivastava et al. 2014] to prevent overfitting, and choose the appropriate architec-
ture and optimization hyperparameters to prevent underfitting.

On the contrary, non-parametric models, and especially the Bayesian
approaches (e.g., Section 4.2.1.3), tend to be less prone to overfitting as their pre-
dictions do not focus on a single point estimate set of parameters, but average over
all plausible sets of parameters.

4.4.4 Evaluation Metrics for Supervised Algorithms
Once we have trained our supervised ML algorithm, we can use a few metrics
to evaluate its prediction capabilities. We devise different metrics for regression
and classification tasks. Nevertheless, in both cases one of the most common
approaches is to split the dataset into training and test datasets. Usually, 70% of
the samples (randomly selected) are used for the training dataset and 30% for the
test one. The idea here is to use the training dataset for training themodel and use
the test dataset for evaluating the learned model. In the following, we formulate
the metrics using notation as if we were using the whole dataset, but usually they
are applied on the test dataset.

4.4.4.1 Regression Algorithms
We remind to the reader that regression algorithms try to find themapping f : x→
y from the input variables x ∈ RD to the numerical or continuous output variables
y ∈ RE. Moreover, we assume access to a dataset of the form: {(x1, y1), . . . , (xN , yN)},
where N is the number of samples, yi = f (xi) + ", and " is some noise.
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Mean squared error Probably themost commonmetric for evaluating the perfor-
mance of a regression algorithm is the MSE (Section 4.2.1.2):

MSE =
∑N

i=1(yi − f̂ (xi))2

N
(4.53)

where f̂ is the prediction of our learned model.

Normalized mean squared error Another similar metric is the normalized mean
squared error (NMSE):

NMSE = MSE
var(Y) =

1
N

∑N
i=1(yi − f̂ (xi))2

1
N−1

∑N
i=1(yi − µY)2

(4.54)

where f̂ is the prediction of our learnedmodel, andµY is themean of the observed
values.

Negative log prediction probability In cases where ourmodel is probabilistic, that
is, the output is not a single point estimate, but a distribution, ametric that we can
use is the negative log prediction probability (NLPP):

NLPP = −
N∑
i=1

logf̃ (yi|xi) (4.55)

where f̃ is the prediction distribution of our learnedmodel.We interpret this as the
probability that the prediction of xi is yi. For example, if our model’s output distri-
bution is a Gaussian with diagonal covariance, that is, f̃ (yi|xi) = N (µ(xi),Σ(xi)),
then we can define the NLPP as follows:

NLPP =
N∑
i=1

(µ(xi)− yi)
TΣ−1(xi)(µ(xi)− yi) + log detΣ(xi) (4.56)

4.4.4.2 Classification Algorithms
We remind the reader that classification algorithms try to find themapping f : x→
y from the input variables x ∈ RD to the discrete or categorical output variables y.
Moreover, we assume access to a dataset of the form: {(x1, y1), . . . , (xN , yN)}, where
N is the number of samples, and yi = f (xi).

Confusion matrix One of the most common ways to evaluate (but also visualize)
the result of a learned classifier is the confusion matrix. The confusion matrix is
a table where rows represent the predicted classes and the columns the actual
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Table 4.3 Example of a confusion matrix.

Confusion matrix Actual positive Actual negative
Predicted positive 4 1
Predicted negative 2 3

classes. We fill each cell with the number of samples that have the classifier pre-
dict the row class, but the actual class is given by the column. For example, let’s
assume that we have dataset consisting of 10 samples and the possible classes are
two: positive and negative. A possible confusion matrix is shown in Table 4.3.

From this table, we can see that four samples were correctly predicted as pos-
itives, whereas one of them was predicted to be positive when in reality it was
negative. Similarly, we see that three samples were correctly predicted as negatives,
whereas twoof themwerepredicted tobenegativewhen they actuallywere positive.
We can also get some interesting values:

• True positive (TP): The number of samples that were correctly classified as
positive,

• True negative (TN): The number of samples that were correctly classified as
negative,

• False positive (FP): The number of samples that were wrongly classified as
positive,

• False negative (FN): The number of samples that were wrongly classified as
negative.

These values, as defined here, make sense only in binary classification, but
there are ways to compute them for the multi-class case. One way of doing so, is
to compute these metrics per class and treat the results each time as a binary clas-
sification process where the goal is to find whether a sample belongs to one class
or not. Using these values allows us to define a few other metrics for evaluating
classifiers:

accuracy = TP + TN
TP + TN + FP + FN

(4.57)

recall = TP
TP + FN

(4.58)

precision = TP
TP + FP

(4.59)
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specificity = TN
TN + FP

(4.60)

F1-score = 2
precision · recall
precision+ recall

(4.61)

4.4.5 Model Selection
Many ML algorithms have a few hyperparameters that the user needs to choose.
Sometimeswe can choose themempirically using somehigh-level intuitions about
the task at hand or observing the behavior of the system. Nevertheless, a fewmore
principled ways of selecting the hyperparameters exist. In most cases, we assume
that the process of identifying the best hyperparameters is an optimization pro-
cess where we define an evaluation metric (e.g., one of the many we introduced in
Section 4.4.4) and choose a suitable optimizer. In some cases, like for example GPs
(see Section 4.2.1.3), we can have an analytical formulation that we can optimize for
the hyperparameters, but in the general case this is not possible and thus we need
to find alternative optimizers.

4.4.5.1 Grid Search
When the hyperparameters are discrete or low-dimensional (i.e., less than 5–6D),
then performing a grid search over the hyperparameter space usually yields the
best results. In essence, we extensively evaluate the whole hyperparameter space
and choose the parameters that perform the best according to our metric. When
the hyperparameters are continuous, we have to discretize them in order to be able
to use a grid search. The main disadvantages of a grid search for hyperparameter
optimization are: (a) it cannot scale to high-dimensional continuous spaces, and
(b) many training processes must be performed as there is not an intelligent way
to identify when to stop.

4.4.5.2 Bayesian Optimization
Another popular approach for performing hyperparameter optimization (also
referred to as automated ML) is Bayesian optimization (BO) [Brochu et al. 2010].
BO is a model-based, black-box optimization algorithm that is tailored for very
expensive objective functions. Like all model-based optimization algorithms, BO
creates a model of the objective function with a regression method (usually GPs),
uses this model to select the next point to acquire, then updates the model, and so
on. The main disadvantage of BO is that it cannot scale to high-dimensional con-
tinuous spaces, but it has been shown that when combined with intelligent feature
selection it can work very well in practice [Feurer et al. 2015].
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4.5 Summary and Links
This chapter provided a brief overview of the most important ML algorithms. We
attempted to provide a wide spectrum of ML algorithms, but also give as much as
possible the mathematical foundations of each approach. We began with a brief
summary of probability theory that is important for understanding many of the
concepts inML.Wediscussed several SL algorithms: both for regression and classi-
fication. We also highlighted that a few approaches (like NNs, GPs, and SVMs) can
be used both for classification and regression tasks. We also analyzed two main
algorithms for clustering, K-means and GMMs, which are able to automatically
discover the underlying structure of the data. Lastly, we gave a brief overview of
what a real data ML pipeline would look like.

We believe that this chapter can serve both as an introduction to ML, but also
as a reference, as we tried to have an educational perspective as well as provide all
the mathematical foundations and formulas of the algorithms.

The remainder of the book contains case studies (CSs) that use different styles
of ML: CS1 (Chapter 5) looks at predicting hotel occupancy in a European city,
CS2 (Chapter 6) classifies signals to support brain–computer interaction, CS4
(Chapter 8) uses GMMs to recognize gestures, CS5 (Chapter 9) to model personal
contexts and includes a detailed discussion of understanding the link fromsensing
to matching, and CS7 (Chapter 11) reports experiments using different ML models
for detecting driver cognitive load. CS3 (Chapter 7) and CS6 (Chapter 10) use dif-
ferent sequencing models for touchscreen text entry and general adaptive touch
interfaces.

4.6 Follow-up Questions
Although we have provided a wide range of ML models/algorithms and their for-
mulations, there exists no better way to learn than implementing the algorithms/
models yourself and experimenting with data. Here are a few questions/tasks to
guide your self-practice:

1. Try to implement a simple library in the language of your choice for feedfor-
wardNNs.Make sure that youhave implementedback-propagation correctly.
How important is the optimization procedure? Try to compare between
vanilla gradient descent and more sophisticated schemes (e.g., Adam).

2. Can you create examples of ML models that under- or over-fit some data?
What are the factors that make this happen?

3. Can you compare the performance of different type of classification mod-
els? For example, NNs and SVMs? Start from a binary classification example
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and move to multi-class classification problems. How can we use SVMs for
multi-class classification?

4. Can you make a feedforward NN model output a Gaussian distribution per
query point instead of a single value? How does it compare to Bayesian
methods (e.g., GPs)?

5. In Example 4.8 we used a very simple NN architecture. Can you use either
grid search or BO to identify the optimal NN structure? How does it compare
with our original design? Why is this?

6. Can you identify the importance of data pre-processing? Try inserting in the
data some outlier values (very big positive and/or negative data). Is normal-
ization or standardization more effective? Is data pre-processing necessary
for Bayesian methods (e.g., GPs)?
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