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Text Analytics

(some slides are based on notes by C. Faloutsos)



.‘-h Text analytics- Detailed outline

m text
# = problem
= full text scanning
= INversion
= Signature files
= Clustering
= information filtering and LSI



':h Problem - Motivation

= Eg., find documents containing “datad”,
“retrieval’

= Applications:



':.h Problem - Motivation

= Eg., find documents containing “datad”,
“retrieval’

= Applications:
= Web
= law + patent offices
= digital libraries
= information filtering



','h Problem - Motivation

= Types of queries:
» boolean (‘data’ AND ‘retrieval’ AND NOT
r)



.:Ih Problem - Motivation

= Types of queries:
» boolean (‘data’ AND ‘retrieval’ AND NOT
r)
= additional features (‘data’ ADJACENT
‘retrieval’)

= keyword queries (‘data’, ‘retrieval’)

= How to search a large collection of
documents?



','h Full-text scanning

= Build a FSA; scan
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','h Full-text scanning

= for single term:
= (naive: O(N*M))

ABRACADABRA text

CAB pattern



':.h Full-text scanning

= for single term:
= (naive: O(N*M))
« Knuth Morris and Pratt ('77)

= build a small FSA; visit every text letter once
only, by carefully shifting more than one step

ABRACADABRA text

CAB pattern



':h Full-text scanning
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':.h Full-text scanning

= for single term:
= (naive: O(N*M))
« Knuth Morris and Pratt ('77)

= Boyer and Moore ('77)

= preprocess pattern; start from right to left &
skip!

ABRACADABRA text

CAB pattern



','h Full-text scanning

ABRACADABRA text
|
CAB pattern
CAB
CAB

CAB



':.h Full-text scanning

ABRACADABRA text
I

OM'NOUS pattern
OMINOUS

Boyer+Moore: fastest, in practice
Sunday (‘90): some improvements



':.h Full-text scanning

= For multiple terms (w/o “don’t care”
characters): Aho+Corasic (‘75)

= again, build a simplified FSA in O(M) time
= Probabilistic algorithms: ‘fingerprints’
(Karp + Rabin '87)

= approximate match: ‘agrep’
[Wu+Manber, Baeza-Yates+, '92]



':.h Full-text scanning

= Approximate matching - string editing
distance:

d( ‘survey’, ‘surgery’) = 2

= min # of insertions, deletions, substitutions
to transform the first string

into the second
SU RYEY
SURGERY



':h Full-text scanning

= string editing distance - how to
compute?

m A:



':.h Full-text scanning

= string editing distance - how to
compute?
= A: dynamic programming
cost( i, j ) = cost to match prefix of

length /of first string s with prefix of
length j of second string ¢



':.h Full-text scanning

if s[i] = t[j] then
cost( i, j ) = cost(i-1, j-1)
else
cost(i, j ) = min (
1 + cost(i, j-1) // deletion
1 + cost(i-1, j-1) // substitution
1 + cost(i-1, j) // insertion

)



':.h Full-text scanning

Complexity: O(M*N) (when using a matrix
to ‘'memorize’ partial results)



':.h Full-text scanning

Conclusions:

= Full text scanning needs no space
overhead, but is slow for large datasets
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m text
= problem
= full text scanning
= INversion
= Signature files
= Clustering
= information filtering and LSI



':.h Text - Inversion
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':.h Text - Inversion
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.:Ih Text - Inversion
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':h Text - Inversion

= how to organize the dictionary?

= stemming — Y/N?
= Insertions?



':.h Text - Inversion

= how to organize the dictionary?
= B-tree, hashing, TRIEs, PATRICIA trees, ...

= stemming — Y/N?
= Insertions?



':.h Text — Inversion

= other topics:
= Parallelism [Tomasic+,93]
= Insertions [Tomasic+94], [Brown+]
= Zipf’ distributions
= Approximate searching (‘glimpse’ [Wu+])



':,h Text -

Inversion

= postings list — more Zipf distr.: eqg.,

rank-frequency plot of "Bible

log(freq) o=

I
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freq~ 1/ (rank * In(1.78V))



':.h Text - Inversion

= postings lists
= Cutting+Pedersen
= (keep first 4 in B-tree leaves)

= how to allocate space: [Faloutsos+92]
= geometric progression

= compression (Elias codes) [Zobel+] — down
to 2% overhead!



,:h Conclusions

= needs space overhead (2%-300%), but
it is the fastest



.‘-h Text analytics- Detailed outline

m text
= problem
= full text scanning
= INversion
# = Signature files
= Clustering
= information filtering and LSI



.:h Signature files

= idea: 'quick & dirty’ filter




’ ‘-h Signature files

= idea: 'quick & dirty’ filter

= then, do sequential scan on signature file
and discard ‘false alarms’

= Adv.: easy insertions; faster than seq. scan
= Disadv.: O(N) search (with small constant)

= Q: how to extract signatures?



':.h Signature files

= A: superimposed coding!! [Mooers49],

Word Hignature
dat a 001 000 110 010
base o0 010 101 001

doc. signature Q01 010 111 011

m (=4 bits/word) ~ (=4 bits set to “1” and the rest left as “0”)
F (=12 bits sign. size)
the bit patterns are OR-ed to form the document signature



':.h Signature files

= A: superimposed coding!! [Mooers49],

Word mignature
dat a 001 000 110 010
baae 000 010 101 001

doc. signature 001 010 111 D11

data Y ﬁ Y

actual match



.:h Signature files

= A: superimposed coding!! [Mooers49],

Word mignature
dat a 001 000 110 010
baae 000 010 101 001

doc. signature 001 010 111 D11

retrieval Y Y YY

actual dismissal



.:h Signature files

= A: superimposed coding!! [Mooers49],

Word mignature
dat a 001 000 110 010
baae 000 010 101 001

doc. signature 001 010 111 D11

nucleotic ‘ ‘ ‘ ‘

false alarm (‘false drop’)



':.h Signature files

= A: superimposed coding!! [Mooers49],

Word mignature
dat a 001 000 110 010
baae 000 010 101 001

doc. signature 001 010 111 D11

‘YES’ 1s ‘MAYBE’
‘NO’ 1s ‘NO’



.:h Signature files

= Q1: How to choose Fand m?
= Q2: Why is it called ‘false drop™
= Q3: other apps of signature files?



':.h Signature files

= Q1: How to choose Fand m?

Word mignature
dat a 001 000 110 010
baae 000 010 101 001

doc. signature 001 010 111 D11

m (=4 bits/word)
F (=12 bits sign. size)



’ ‘-h Signature files

= Q1: How to choose Fand m?
= A: so that doc. signature is 50% full

Word mignature
dat a 001 000 110 010
baae 000 010 101 001

doc. signature 001 010 111 D11

m (=4 bits/word)
F (=12 bits sign. size)



.:h Signature files

= Q1: How to choose Fand m?
# = Q2: Why is it called *false drop™
= Q3: other apps of signature files?



':.h Signature files

= Q2: Why is it called ‘false drop™

= Very old but fascinating story [1949]

= how to find qualifying books (by title word,
and/or author, and/or keyword)

= in O(1) time?
= Without computers



':.h Signature files

= Solution: edge-notched cards

12 40
looo ...00
000 ..00 each title word Is mapped

to m numbers(how?)
and the corresponding
holes are cut out:




.:h Signature files

= Solution: edge-notched cards

12 40
looo .. 00
\Joo ..Uo
data

‘data’ -> #1, #39



':.h Signature files

= Search, e.qg., for ‘data’: activate needle

#1, #39, and shake the stack of cards!
12 40

looo .. 00

00 ...nlo
dat

‘data’ -> #1, #39



.:h Signature files

= Also known as ‘zatocoding’, from 'Zator’
company.



.:h Signature files

= Q1: How to choose Fand m?
= Q2: Why is it called ‘false drop™
# = Q3: other apps of signature files?



’ ‘-h Signature files

= Q3: other apps of signature files?

= A: anything that has to do with
‘membership testing”: does ‘data’ belong
to the set of words of the document?

Word mignature
dat a 001 000 110 010
baae 000 010 101 001

doc. signature 001 010 111 D11



':.h Signature files

= UNIX’s early ‘spell’ system [MclIlroy]

= Bloom-joins in System R* [Mackert+]
and ‘active disks’ [Riedel99]

= differential files [Severance+Lohman]



,:h Signature files - conclusions

= easy insertions; slower than inversion

= brilliant idea of ‘quick and dirty’ filter:
quickly discard the vast majority of non-
qualifying elements, and focus on the rest.
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.‘-h Text analytics- Detailed outline

s text
= problem
= full text scanning
= Inversion
= Signature files

# = Clustering

= information filtering and LSI



Clustering

Vector Space Model and
.

= keyword queries (vs Boolean)

= each document: -> vector (HOW?)
= each query: -> vector

= search for ‘similar’ vectors




Vector Space Model and
':.h Clustering

= Main idea:

document

aaron data Z00
‘Indexing’ ‘ ‘ ‘ ‘ ‘ ‘
>

...data...

<€ >
V (= vocabulary size)




Vector Space Model and
':.h Clustering

Then, group nearby vectors together
= Q1: cluster search?
= Q2: cluster generation?

Two significant contributions:
= ranked output
= relevance feedback



Clustering

Vector Space Model and
.

= Cluster search: visit the (k) closest
superclusters; continue recursively

TU TRS

CS TRs




Vector Space Model and
':,h Clustering

= ranked output: easy!

CS TRs




Vector Space Model and
':.h Clustering

= relevance feedback (brilliant idea)
[Roccio’73]
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Vector Space Model and
g‘h Clustering

= relevance feedback (brilliant idea)
[Roccio’73]
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Vector Space Model and
':h Clustering

= How? A: by adding the ‘good’ vectors
and subtracting the ‘bad’ ones

A
o O
o TU TRs
" 0 o©
@ O

o
CS TRs e o




.:h Outline - detailed

= Main idea
= Cluster search

=) a cluster generation
= evaluation




.:h Cluster generation

= Problem:
= given N points in V dimensions,
group them
A o g
o ©
o ©O
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.:h Cluster generation

= Problem:
= given N points in V dimensions,
group them
A o g
o ©
o ©O

O
O O




.:h Cluster generation

We need
= Q1: document-to-document similarity
= Q2: document-to-cluster similarity



':.h Cluster generation

Q1: document-to-document similarity
(recall: ‘bag of words’ representation)

= D1: {'data’, 'retrieval’, ‘'system’}
= D2: {'lung’, ‘pulmonary’, ‘system’}
= distance/similarity functions?



':.h Cluster generation

Al: # of words in common
A2: ........ normalized by the vocabulary sizes
A3: .... etc

About the same performance - prevailing
one:

cosine similarity



.:h Cluster generation

cosine similarity:
similarity(D1, D2) = cos(0) = sum(vy; * v,,) / len(v;)/ len(v,)

D1

D2




.:h Cluster generation

cosine similarity - observations:
= related to the Euclidean distance
= weights v;; : according to tf/idf

D1

D2




':.h Cluster generation

tf (‘term frequency’)

high, if the term appears very often in this
document.

idf (‘inverse document frequency’)

penalizes ‘common’ words, that appear in
almost every document



.:h Cluster generation

We need
= Q1: document-to-document similarity
= Q2: document-to-cluster similarity

O
A 00
(0] ? ©
O )
(@)
>




.:h Cluster generation

= Al: min distance (‘single-link’)
= A2: max distance (‘all-link’)

= A3: avg distance

= A4: distance to centroid

o
A 00
o » \O
o 2
O o
o




':.h Cluster generation

= Al: min distance (‘single-link’)
= leads to elongated clusters

= A2: max distance (‘all-link")
= many, small, tight clusters

= A3: avg distance
= in between the above

s A4: distance to centroid
= fast to compute



.:h Cluster generation

We have

= document-to-document similarity
= document-to-cluster similarity

Q: How to group documents into ‘natural’
clusters



.:h Cluster generation

A: *many-many* algorithms - in two
groups [VanRijsbergen]:

= theoretically sound (O(N*2))
= independent of the insertion order

= iterative (O(N), O(NVlog(N))



Cluster generation - ‘sound’
Ll methods

= Approach#1:

= dendrograms - create a hierarchy (bottom up or
top-down) - choose a cut-off (how?) and cut

‘ .......... . 0.8

....... L 0.3

| | ‘ ‘ 0.1
cat  tiger horse cow




Cluster generation - ‘sound’
':h methods

= Approach#?2:
= Minimize some statistical criterion (eg.,
sum of squares from cluster centers)
= like ‘k-means’
= but how to decide ‘k?



methods

Cluster generation - ‘sound’
.

= Approach#3:

= Graph theoretic [Zahn]:
= build MST;

= delete edges longer than 2.5* std of the local
average

5




Cluster generation - ‘sound’
Ll methods

s Result:
e Variations

« Complexity?



Cluster generation - ‘iterative’
':h methods

General outline:
= Choose 'seeds’ (how?)

= assign each vector to its closest seed
(possibly adjusting cluster centroid)

= possibly, re-assign some vectors to
improve clusters

Fast and practical, but ‘unpredictable’



.:h Cluster generation

one way to estimate # of clusters k& : the
‘cover coefficient’ [Can+] ~ SVD



.:h Outline - detailed

= Main idea

= Cluster search

= Cluster generation
# = evaluation




':.h Evaluation

= Q: how to measure ‘goodness’ of one
distance function vs another?

= A: ground truth (by humans) and
= 'precision’ and ‘recall’



':.h Evaluation

= precision = (retrieved & relevant) / retrieved
= 100% precision -> no false alarms

= recall = (retrieved & relevant)/ relevant
= 100% recall -> no false dismissals
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"-h ST - Detailed outline

s LSI

# = problem definition
= Main idea

= experiments




':.h Information Filtering + LSI

= [Foltz+,’92] Goal:

= users specify interests (= keywords)

= system alerts them, on suitable news-
documents

= Major contribution: LSI = Latent
Semantic Indexing

= latent (‘hidden’) concepts



.:Ih Information Filtering + LSI

Main idea:
= map each document into some ‘concepts’
= map each term into some ‘concepts’

‘Concept’:~ a set of terms, with weights, e.g.

= data” (0.8), “system” (0.5), “retrieval” (0.6) ->
DBMS_concept



':.h Information Filtering + LSI

Pictorially: term-document matrix
(BEFORE)

‘data’ 'system' |'retrieval’ |'lung'|'ear’

TR1 1 1 1
TR2 1 1 1
TR3 1 1

TR4 1




':.h Information Filtering + LSI

Pictorially: concept-document matrix
and...

'DBMS- 'medical-
concept’' concept’
TR1 1

TR2 |1
TR3
TR4




':h Information Filtering + LSI

... and concept-term matrix

'DBMS- 'medical-
concept’ concept’
data 1

system |1

retrieval |1
lung 1
ear 1




"-h Information Filtering + LSI

Q: How to search, eg., for ‘system™?



':.h Information Filtering + LSI

A: find the corresponding concept(s); and
the corresponding documents

'DBMS-
concept’

'medical-
concept’

TR1

1

TR2

1

'DBMS- 'medical-
concept’ | concept’
data 1
system |1
retrieval |1
lung 1

TR3

ear

TR4




':.h Information Filtering + LSI

A: find the corresponding concept(s); and
the corresponding documents

'DBMS-
concept’

'medical-
concept’

TR1

1

TR2

1

'DBMS- 'medical-
concept’ | concept’
data 1
system |1
retrieval |1
lung 1

TR3

ear

TR4




':.h Information Filtering + LSI

Thus it works like an (automatically
constructed) thesaurus:

we may retrieve documents that DONT have
the term ‘system’, but they contain almost
everything else (‘data’, ‘retrieval’)



"-h ST - Detailed outline

s LSI
= problem definition
= Main idea
= experiments



':.h LSI — Some experiments

= 150 Tech Memos (TM) / month

= 34 users submitted ‘profiles’ (6-66
words per profile)

= 100-300 concepts



.:h LSI - Experiments

= four methods, cross-product of:
= vector-space or LSI, for similarity scoring
= keywords or document-sample, for profile
specification

= measured: precision/recall



"-h LSI - Experiments

s LSI, with document-based profiles,
were better

precision

(0.75,0.30)

recall



.:Ih LSI - Discussion - Conclusions

= Great ideg,
= to derive ‘concepts’ from documents
= to build a 'statistical thesaurus’ automatically
= to reduce dimensionality

= Often leads to better precision/recall
= but:

= Needs ‘training’ set of documents
= ‘concept’ vectors are not sparse anymore



.:Ih LSI - Discussion - Conclusions

Observations

= Bellcore (-> Telcordia) has a patent
= used for multi-lingual retrieval

How exactly SVD works?



':h Indexing - Detailed outline

= primary key indexing
= secondary key / multi-key indexing
= Spatial access methods
= fractals
n text
#. SVD: a powerful tool
= multimedia
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