!'_ TexvnTn Nonuoouvn

V. Megalooikonomou

Text Analytics

(some slides are based on notes by C. Faloutsos)

.‘-h Text analytics- Detailed outline

m text
= problem
= full text scanning
= INversion
= Signature files
= Clustering
= information filtering and LSI

':h Problem - Motivation

= Eg., find documents containing “datad”,
“retrieval’

= Applications:

':.h Problem - Motivation

= Eg., find documents containing “datad”,
“retrieval’

= Applications:
= Web
= law + patent offices
= digital libraries
= information filtering

','h Problem - Motivation

= Types of queries:
» boolean (‘data’ AND ‘retrieval’ AND NOT
r)

.:Ih Problem - Motivation

= Types of queries:
» boolean (‘data’ AND ‘retrieval’ AND NOT
r)
= additional features (‘data’ ADJACENT
‘retrieval’)

= keyword queries (‘data’, ‘retrieval’)

= How to search a large collection of
documents?

','h Full-text scanning

= Build a FSA; scan

~

¢ 3 Ont
C O

','h Full-text scanning

= for single term:
= (naive: O(N*M))

ABRACADABRA text

CAB pattern

':.h Full-text scanning

= for single term:
= (naive: O(N*M))
« Knuth Morris and Pratt ('77)

= build a small FSA; visit every text letter once
only, by carefully shifting more than one step

ABRACADABRA text

CAB pattern

':h Full-text scanning

ABRACADABRA text
|
C*\B pattern
CAB
CAB

CAB

':.h Full-text scanning

= for single term:
= (naive: O(N*M))
« Knuth Morris and Pratt ('77)

= Boyer and Moore ('77)

= preprocess pattern; start from right to left &
skip!

ABRACADABRA text

CAB pattern

','h Full-text scanning

ABRACADABRA text
|
CAB pattern
CAB
CAB

CAB

':.h Full-text scanning

ABRACADABRA text
I

OM'NOUS pattern
OMINOUS

Boyer+Moore: fastest, in practice
Sunday (‘90): some improvements

':.h Full-text scanning

= For multiple terms (w/o “don’t care”
characters): Aho+Corasic (‘75)

= again, build a simplified FSA in O(M) time
= Probabilistic algorithms: ‘fingerprints’
(Karp + Rabin '87)

= approximate match: ‘agrep’
[Wu+Manber, Baeza-Yates+, '92]

':.h Full-text scanning

= Approximate matching - string editing
distance:

d(‘survey’, ‘surgery’) = 2

= min # of insertions, deletions, substitutions
to transform the first string

into the second
SU RYEY
SURGERY

':h Full-text scanning

= string editing distance - how to
compute?

m A:

':.h Full-text scanning

= string editing distance - how to
compute?
= A: dynamic programming
cost(i, j) = cost to match prefix of

length /of first string s with prefix of
length j of second string ¢

':.h Full-text scanning

if s[i] = t[j] then
cost(i, j) = cost(i-1, j-1)
else
cost(i, j) = min (
1 + cost(i, j-1) // deletion
1 + cost(i-1, j-1) // substitution
1 + cost(i-1, j) // insertion

)

':.h Full-text scanning

Complexity: O(M*N) (when using a matrix
to ‘'memorize’ partial results)

':.h Full-text scanning

Conclusions:

= Full text scanning needs no space
overhead, but is slow for large datasets

.‘-h Text analytics- Detailed outline

m text
= problem
= full text scanning
= INversion
= Signature files
= Clustering
= information filtering and LSI

':.h Text - Inversion

ol borary Poahrge
[-]:-]

Aront L——"" ;

[l

S]]

AN
b

':.h Text - Inversion

che borany poahirge
T
ARron |
—

|

Q: space overhead?

.:Ih Text - Inversion

ol borary Poahrge
[-]:-]

ARron |

=

[l

S]]

b

~
o -

A: mainly, the postings lists

':h Text - Inversion

= how to organize the dictionary?

= stemming — Y/N?
= Insertions?

':.h Text - Inversion

= how to organize the dictionary?
= B-tree, hashing, TRIEs, PATRICIA trees, ...

= stemming — Y/N?
= Insertions?

':.h Text — Inversion

= other topics:
= Parallelism [Tomasic+,93]
= Insertions [Tomasic+94], [Brown+]
= Zipf’ distributions
= Approximate searching (‘glimpse’ [Wu+])

':,h Text -

Inversion

= postings list — more Zipf distr.: eqg.,

rank-frequency plot of "Bible

log(freq) o=

I
1

ke ™ T
ol b ——

log(rank)

freq~ 1/ (rank * In(1.78V))

':.h Text - Inversion

= postings lists
= Cutting+Pedersen
= (keep first 4 in B-tree leaves)

= how to allocate space: [Faloutsos+92]
= geometric progression

= compression (Elias codes) [Zobel+] — down
to 2% overhead!

,:h Conclusions

= needs space overhead (2%-300%), but
it is the fastest

.‘-h Text analytics- Detailed outline

m text
= problem
= full text scanning
= INversion
= Signature files
= Clustering
= information filtering and LSI

.:h Signature files

= idea: 'quick & dirty’ filter

’ ‘-h Signature files

= idea: 'quick & dirty’ filter

= then, do sequential scan on signature file
and discard ‘false alarms’

= Adv.: easy insertions; faster than seq. scan
= Disadv.: O(N) search (with small constant)

= Q: how to extract signatures?

':.h Signature files

= A: superimposed coding!! [Mooers49],

Word Hignature
dat a 001 000 110 010
base o0 010 101 001

doc. signature Q01 010 111 011

m (=4 bits/word) ~ (=4 bits set to “1” and the rest left as “0”)
F (=12 bits sign. size)
the bit patterns are OR-ed to form the document signature

':.h Signature files

= A: superimposed coding!! [Mooers49],

Word mignature
dat a 001 000 110 010
baae 000 010 101 001

doc. signature 001 010 111 D11

data Y ﬁ Y

actual match

.:h Signature files

= A: superimposed coding!! [Mooers49],

Word mignature
dat a 001 000 110 010
baae 000 010 101 001

doc. signature 001 010 111 D11

retrieval Y Y YY

actual dismissal

.:h Signature files

= A: superimposed coding!! [Mooers49],

Word mignature
dat a 001 000 110 010
baae 000 010 101 001

doc. signature 001 010 111 D11

nucleotic ‘ ‘ ‘ ‘

false alarm (‘false drop’)

':.h Signature files

= A: superimposed coding!! [Mooers49],

Word mignature
dat a 001 000 110 010
baae 000 010 101 001

doc. signature 001 010 111 D11

‘YES’ 1s ‘MAYBE’
‘NO’ 1s ‘NO’

.:h Signature files

= Q1: How to choose Fand m?
= Q2: Why is it called ‘false drop™
= Q3: other apps of signature files?

':.h Signature files

= Q1: How to choose Fand m?

Word mignature
dat a 001 000 110 010
baae 000 010 101 001

doc. signature 001 010 111 D11

m (=4 bits/word)
F (=12 bits sign. size)

’ ‘-h Signature files

= Q1: How to choose Fand m?
= A: so that doc. signature is 50% full

Word mignature
dat a 001 000 110 010
baae 000 010 101 001

doc. signature 001 010 111 D11

m (=4 bits/word)
F (=12 bits sign. size)

.:h Signature files

= Q1: How to choose Fand m?
= Q2: Why is it called *false drop™
= Q3: other apps of signature files?

':.h Signature files

= Q2: Why is it called ‘false drop™

= Very old but fascinating story [1949]

= how to find qualifying books (by title word,
and/or author, and/or keyword)

= in O(1) time?
= Without computers

':.h Signature files

= Solution: edge-notched cards

12 40
looo ...00
000 ..00 each title word Is mapped

to m numbers(how?)
and the corresponding
holes are cut out:

.:h Signature files

= Solution: edge-notched cards

12 40
looo .. 00
\Joo ..Uo
data

‘data’ -> #1, #39

':.h Signature files

= Search, e.qg., for ‘data’: activate needle

#1, #39, and shake the stack of cards!
12 40

looo .. 00

00 ...nlo
dat

‘data’ -> #1, #39

.:h Signature files

= Also known as ‘zatocoding’, from 'Zator’
company.

.:h Signature files

= Q1: How to choose Fand m?
= Q2: Why is it called ‘false drop™
= Q3: other apps of signature files?

’ ‘-h Signature files

= Q3: other apps of signature files?

= A: anything that has to do with
‘membership testing”: does ‘data’ belong
to the set of words of the document?

Word mignature
dat a 001 000 110 010
baae 000 010 101 001

doc. signature 001 010 111 D11

':.h Signature files

= UNIX’s early ‘spell’ system [MclIlroy]

= Bloom-joins in System R* [Mackert+]
and ‘active disks’ [Riedel99]

= differential files [Severance+Lohman]

,:h Signature files - conclusions

= easy insertions; slower than inversion

= brilliant idea of ‘quick and dirty’ filter:
quickly discard the vast majority of non-
qualifying elements, and focus on the rest.

,-h References

Aho, A. V. and M. J. Corasick (June 1975). "Fast Pattern Matching: An
Aid to Bibliographic Search." CACM 18(6): 333-340.

Boyer, R. S. and J. S. Moore (Oct. 1977). "A Fast String Searching
Algorithm." CACM 20(10): 762-772.

Brown, E. W., J. P. Callan, et al. (March 1994). Supporting Full-Text
Information Retrieval with a Persistent Object Store. Proc. of EDBT
conference, Cambridge, U.K., Springer Verlag.

Faloutsos, C. and H. V. Jagadish (Aug. 23-27, 1992). On B-tree Indices
for Skewed Distributions. 18th VLDB Conference, Vancouver, British
Columbia.

Karp, R. M. and M. O. Rabin (March 1987). "Efficient Randomized
Pattern-Matching Algorithms." IBM Journal of Research and
Development 31(2): 249-260.

Knuth, D. E., J. H. Morris, et al. (June 1977). "Fast Pattern Matching in
Strings." SIAM J. Comput 6(2): 323-350.

|'h References - cont'd

Mackert, L. M. and G. M. Lohman (August 1986). R* Optimizer
Validation and Performance Evaluation for Distributed Queries. Proc. of
12th Int. Conf. on Very Large Data Bases (VLDB), Kyoto, Japan.

Manber, U. and S. Wu (1994). GLIMPSE: A Tool to Search Through
Entire File Systems. Proc. of USENIX Techn. Conf.

Mcllroy, M. D. (Jan. 1982). "Development of a Spelling List." IEEE
Trans. on Communications COM-30(1): 91-99.

Mooers, C. (1949). Application of Random Codes to the Gathering of
Statistical Information

Bulletin 31. Cambridge, Mass, Zator Co.

Pedersen, D. C. a. J. (1990). Optimizations for dynamic inverted index
maintenance. ACM SIGIR.

Riedel, E. (1999). Active Disks: Remote Execution for Network
Attached Storage. ECE, CMU. Pittsburgh, PA.

|'h References - cont'd

= Severance, D. G. and G. M. Lohman (Sept. 1976). "Differential
Files: Their Application to the Maintenance of Large Databases."
ACM TODS 1(3): 256-267.

= Tomasic, A. and H. Garcia-Molina (1993). Performance of
Inverted Indices in Distributed Text Document Retrieval
Systems. PDIS.

= Tomasic, A., H. Garcia-Molina, et al. (May 24-27, 1994).
Incremental Updates of Inverted Lists for Text Document
Retrieval. ACM SIGMOD, Minneapolis, MN.

= Wu, S. and U. Manber (1992). "AGREP- A Fast Approximate
Pattern-Matching Tool." .

= Zobel, J., A. Moffat, et al. (Aug. 23-27, 1992). An Efficient
Indexing Technique for Full-Text Database Systems. VLDB,
Vancouver, B.C., Canada.

.‘-h Text analytics- Detailed outline

s text
= problem
= full text scanning
= Inversion
= Signature files

= Clustering

= information filtering and LSI

Clustering

Vector Space Model and
.

= keyword queries (vs Boolean)

= each document: -> vector (HOW?)
= each query: -> vector

= search for ‘similar’ vectors

Vector Space Model and
':.h Clustering

= Main idea:

document

aaron data Z00
‘Indexing’ ‘ ‘ ‘ ‘ ‘ ‘
>

...data...

<€ >
V (= vocabulary size)

Vector Space Model and
':.h Clustering

Then, group nearby vectors together
= Q1: cluster search?
= Q2: cluster generation?

Two significant contributions:
= ranked output
= relevance feedback

Clustering

Vector Space Model and
.

= Cluster search: visit the (k) closest
superclusters; continue recursively

TU TRS

CS TRs

Vector Space Model and
':,h Clustering

= ranked output: easy!

CS TRs

Vector Space Model and
':.h Clustering

= relevance feedback (brilliant idea)
[Roccio’73]

o O

<> o TU TRs
o ©

@ O

CS TRs e,

Vector Space Model and
g‘h Clustering

= relevance feedback (brilliant idea)
[Roccio’73]

x HoOw?,
o O
- O TU TRs
" 0 o©
@ O

o
CS TRs e o

Vector Space Model and
':h Clustering

= How? A: by adding the ‘good’ vectors
and subtracting the ‘bad’ ones

A
o O
o TU TRs
" 0 o©
@ O

o
CS TRs e o

.:h Outline - detailed

= Main idea
= Cluster search

=) a cluster generation
= evaluation

.:h Cluster generation

= Problem:
= given N points in V dimensions,
group them
A o g
o ©
o ©O

O O

.:h Cluster generation

= Problem:
= given N points in V dimensions,
group them
A o g
o ©
o ©O

O
O O

.:h Cluster generation

We need
= Q1: document-to-document similarity
= Q2: document-to-cluster similarity

':.h Cluster generation

Q1: document-to-document similarity
(recall: ‘bag of words’ representation)

= D1: {'data’, 'retrieval’, ‘'system’}
= D2: {'lung’, ‘pulmonary’, ‘system’}
= distance/similarity functions?

':.h Cluster generation

Al: # of words in common
A2: normalized by the vocabulary sizes
A3: etc

About the same performance - prevailing
one:

cosine similarity

.:h Cluster generation

cosine similarity:
similarity(D1, D2) = cos(0) = sum(vy; * v,,) / len(v;)/ len(v,)

D1

D2

.:h Cluster generation

cosine similarity - observations:
= related to the Euclidean distance
= weights v;; : according to tf/idf

D1

D2

':.h Cluster generation

tf (‘term frequency’)

high, if the term appears very often in this
document.

idf (‘inverse document frequency’)

penalizes ‘common’ words, that appear in
almost every document

.:h Cluster generation

We need
= Q1: document-to-document similarity
= Q2: document-to-cluster similarity

O
A 00
(0] ? ©
O)
(@)
>

.:h Cluster generation

= Al: min distance (‘single-link’)
= A2: max distance (‘all-link’)

= A3: avg distance

= A4: distance to centroid

o
A 00
o » \O
o 2
O o
o

':.h Cluster generation

= Al: min distance (‘single-link’)
= leads to elongated clusters

= A2: max distance (‘all-link")
= many, small, tight clusters

= A3: avg distance
= in between the above

s A4: distance to centroid
= fast to compute

.:h Cluster generation

We have

= document-to-document similarity
= document-to-cluster similarity

Q: How to group documents into ‘natural’
clusters

.:h Cluster generation

A: *many-many* algorithms - in two
groups [VanRijsbergen]:

= theoretically sound (O(N*2))
= independent of the insertion order

= iterative (O(N), O(NVlog(N))

Cluster generation - ‘sound’
Ll methods

= Approach#1:

= dendrograms - create a hierarchy (bottom up or
top-down) - choose a cut-off (how?) and cut

‘ 0.8

....... L 0.3

| | ‘ ‘ 0.1
cat tiger horse cow

Cluster generation - ‘sound’
':h methods

= Approach#?2:
= Minimize some statistical criterion (eg.,
sum of squares from cluster centers)
= like ‘k-means’
= but how to decide ‘k?

methods

Cluster generation - ‘sound’
.

= Approach#3:

= Graph theoretic [Zahn]:
= build MST;

= delete edges longer than 2.5* std of the local
average

5

Cluster generation - ‘sound’
Ll methods

s Result:
e Variations

« Complexity?

Cluster generation - ‘iterative’
':h methods

General outline:
= Choose 'seeds’ (how?)

= assign each vector to its closest seed
(possibly adjusting cluster centroid)

= possibly, re-assign some vectors to
improve clusters

Fast and practical, but ‘unpredictable’

.:h Cluster generation

one way to estimate # of clusters k& : the
‘cover coefficient’ [Can+] ~ SVD

.:h Outline - detailed

= Main idea

= Cluster search

= Cluster generation
= evaluation

':.h Evaluation

= Q: how to measure ‘goodness’ of one
distance function vs another?

= A: ground truth (by humans) and
= 'precision’ and ‘recall’

':.h Evaluation

= precision = (retrieved & relevant) / retrieved
= 100% precision -> no false alarms

= recall = (retrieved & relevant)/ relevant
= 100% recall -> no false dismissals

,-h References

Can, F. and E. A. Ozkarahan (Dec. 1990). "Concepts and Effectiveness of
the Cover-Coefficient-Based Clustering Methodology for Text Databases."
ACM TODS 15(4): 483-517.

Noreault, T., M. McGill, et al. (1983). A Performance Evaluation of Similarity
Measures, Document Term Weighting Schemes and Representation in a
Boolean Environment. Information Retrieval Research, Butterworths.

Rocchio, J. 1. (1971). Relevance Feedback in Information Retrieval. The
SMART Retrieval System - Experiments in Automatic Document Processing.
G. Salton. Englewood Cliffs, New Jersey, Prentice-Hall Inc.

Salton, G. (1971). The SMART Retrieval System - Experiments in Automatic
Document Processing. Englewood Cliffs, New Jersey, Prentice-Hall Inc.

Salton, G. and M. J. McGill (1983). Introduction to Modern Information
Retrieval, McGraw-Hill.

Van-Rijsbergen, C. J. (1979). Information Retrieval. London, England,
Butterworths.

Zahn, C. T. (Jan. 1971). "Graph-Theoretical Methods for Detecting and
Describing Gestalt Clusters." IEEE Trans. on Computers C-20(1): 68-86.

.‘-h Text analytics- Detailed outline

m text
= problem
= full text scanning
= Inversion
= Signature files
= Clustering
= information filtering and LSI

"-h ST - Detailed outline

s LSI

= problem definition
= Main idea

= experiments

':.h Information Filtering + LSI

= [Foltz+,’92] Goal:

= users specify interests (= keywords)

= system alerts them, on suitable news-
documents

= Major contribution: LSI = Latent
Semantic Indexing

= latent (‘hidden’) concepts

.:Ih Information Filtering + LSI

Main idea:
= map each document into some ‘concepts’
= map each term into some ‘concepts’

‘Concept’:~ a set of terms, with weights, e.g.

= data” (0.8), “system” (0.5), “retrieval” (0.6) ->
DBMS_concept

':.h Information Filtering + LSI

Pictorially: term-document matrix
(BEFORE)

‘data’ 'system' |'retrieval’ |'lung'|'ear’

TR1 1 1 1
TR2 1 1 1
TR3 1 1

TR4 1

':.h Information Filtering + LSI

Pictorially: concept-document matrix
and...

'DBMS- 'medical-
concept’' concept’
TR1 1

TR2 |1
TR3
TR4

':h Information Filtering + LSI

... and concept-term matrix

'DBMS- 'medical-
concept’ concept’
data 1

system |1

retrieval |1
lung 1
ear 1

"-h Information Filtering + LSI

Q: How to search, eg., for ‘system™?

':.h Information Filtering + LSI

A: find the corresponding concept(s); and
the corresponding documents

'DBMS-
concept’

'medical-
concept’

TR1

1

TR2

1

'DBMS- 'medical-
concept’ | concept’
data 1
system |1
retrieval |1
lung 1

TR3

ear

TR4

':.h Information Filtering + LSI

A: find the corresponding concept(s); and
the corresponding documents

'DBMS-
concept’

'medical-
concept’

TR1

1

TR2

1

'DBMS- 'medical-
concept’ | concept’
data 1
system |1
retrieval |1
lung 1

TR3

ear

TR4

':.h Information Filtering + LSI

Thus it works like an (automatically
constructed) thesaurus:

we may retrieve documents that DONT have
the term ‘system’, but they contain almost
everything else (‘data’, ‘retrieval’)

"-h ST - Detailed outline

s LSI
= problem definition
= Main idea
= experiments

':.h LSI — Some experiments

= 150 Tech Memos (TM) / month

= 34 users submitted ‘profiles’ (6-66
words per profile)

= 100-300 concepts

.:h LSI - Experiments

= four methods, cross-product of:
= vector-space or LSI, for similarity scoring
= keywords or document-sample, for profile
specification

= measured: precision/recall

"-h LSI - Experiments

s LSI, with document-based profiles,
were better

precision

(0.75,0.30)

recall

.:Ih LSI - Discussion - Conclusions

= Great ideg,
= to derive ‘concepts’ from documents
= to build a 'statistical thesaurus’ automatically
= to reduce dimensionality

= Often leads to better precision/recall
= but:

= Needs ‘training’ set of documents
= ‘concept’ vectors are not sparse anymore

.:Ih LSI - Discussion - Conclusions

Observations

= Bellcore (-> Telcordia) has a patent
= used for multi-lingual retrieval

How exactly SVD works?

':h Indexing - Detailed outline

= primary key indexing
= secondary key / multi-key indexing
= Spatial access methods
= fractals
n text
#. SVD: a powerful tool
= multimedia

':.h References

= Foltz, P. W. and S. T. Dumais (Dec. 1992).
"Personalized Information Delivery: An Analysis of
Information Filtering Methods." Comm. of ACM

(CACM) 35(12): 51-60.

	Διαφάνεια 1: Τεχνητή Νοημοσύνη
	Διαφάνεια 2: Text analytics- Detailed outline
	Διαφάνεια 3: Problem - Motivation
	Διαφάνεια 4: Problem - Motivation
	Διαφάνεια 5: Problem - Motivation
	Διαφάνεια 6: Problem - Motivation
	Διαφάνεια 7: Full-text scanning
	Διαφάνεια 8: Full-text scanning
	Διαφάνεια 9: Full-text scanning
	Διαφάνεια 10: Full-text scanning
	Διαφάνεια 11: Full-text scanning
	Διαφάνεια 12: Full-text scanning
	Διαφάνεια 13: Full-text scanning
	Διαφάνεια 14: Full-text scanning
	Διαφάνεια 15: Full-text scanning
	Διαφάνεια 16: Full-text scanning
	Διαφάνεια 17: Full-text scanning
	Διαφάνεια 18: Full-text scanning
	Διαφάνεια 19: Full-text scanning
	Διαφάνεια 20: Full-text scanning
	Διαφάνεια 21: Text analytics- Detailed outline
	Διαφάνεια 22: Text - Inversion
	Διαφάνεια 23: Text - Inversion
	Διαφάνεια 24: Text - Inversion
	Διαφάνεια 25: Text - Inversion
	Διαφάνεια 26: Text - Inversion
	Διαφάνεια 27: Text – Inversion
	Διαφάνεια 28: Text - Inversion
	Διαφάνεια 29: Text - Inversion
	Διαφάνεια 30: Conclusions
	Διαφάνεια 31: Text analytics- Detailed outline
	Διαφάνεια 32: Signature files
	Διαφάνεια 33: Signature files
	Διαφάνεια 34: Signature files
	Διαφάνεια 35: Signature files
	Διαφάνεια 36: Signature files
	Διαφάνεια 37: Signature files
	Διαφάνεια 38: Signature files
	Διαφάνεια 39: Signature files
	Διαφάνεια 40: Signature files
	Διαφάνεια 41: Signature files
	Διαφάνεια 42: Signature files
	Διαφάνεια 43: Signature files
	Διαφάνεια 44: Signature files
	Διαφάνεια 45: Signature files
	Διαφάνεια 46: Signature files
	Διαφάνεια 47: Signature files
	Διαφάνεια 48: Signature files
	Διαφάνεια 49: Signature files
	Διαφάνεια 50: Signature files
	Διαφάνεια 51: Signature files - conclusions
	Διαφάνεια 52: References
	Διαφάνεια 53: References - cont’d
	Διαφάνεια 54: References - cont’d
	Διαφάνεια 55: Text analytics- Detailed outline
	Διαφάνεια 56: Vector Space Model and Clustering
	Διαφάνεια 57: Vector Space Model and Clustering
	Διαφάνεια 58: Vector Space Model and Clustering
	Διαφάνεια 59: Vector Space Model and Clustering
	Διαφάνεια 60: Vector Space Model and Clustering
	Διαφάνεια 61: Vector Space Model and Clustering
	Διαφάνεια 62: Vector Space Model and Clustering
	Διαφάνεια 63: Vector Space Model and Clustering
	Διαφάνεια 64: Outline - detailed
	Διαφάνεια 65: Cluster generation
	Διαφάνεια 66: Cluster generation
	Διαφάνεια 67: Cluster generation
	Διαφάνεια 68: Cluster generation
	Διαφάνεια 69: Cluster generation
	Διαφάνεια 70: Cluster generation
	Διαφάνεια 71: Cluster generation
	Διαφάνεια 72: Cluster generation
	Διαφάνεια 73: Cluster generation
	Διαφάνεια 74: Cluster generation
	Διαφάνεια 75: Cluster generation
	Διαφάνεια 76: Cluster generation
	Διαφάνεια 77: Cluster generation
	Διαφάνεια 78: Cluster generation - ‘sound’ methods
	Διαφάνεια 79: Cluster generation - ‘sound’ methods
	Διαφάνεια 80: Cluster generation - ‘sound’ methods
	Διαφάνεια 81: Cluster generation - ‘sound’ methods
	Διαφάνεια 82: Cluster generation - ‘iterative’ methods
	Διαφάνεια 83: Cluster generation
	Διαφάνεια 84: Outline - detailed
	Διαφάνεια 85: Evaluation
	Διαφάνεια 86: Evaluation
	Διαφάνεια 87: References
	Διαφάνεια 88: Text analytics- Detailed outline
	Διαφάνεια 89: LSI - Detailed outline
	Διαφάνεια 90: Information Filtering + LSI
	Διαφάνεια 91: Information Filtering + LSI
	Διαφάνεια 92: Information Filtering + LSI
	Διαφάνεια 93: Information Filtering + LSI
	Διαφάνεια 94: Information Filtering + LSI
	Διαφάνεια 95: Information Filtering + LSI
	Διαφάνεια 96: Information Filtering + LSI
	Διαφάνεια 97: Information Filtering + LSI
	Διαφάνεια 98: Information Filtering + LSI
	Διαφάνεια 99: LSI - Detailed outline
	Διαφάνεια 100: LSI – Some experiments
	Διαφάνεια 101: LSI - Experiments
	Διαφάνεια 102: LSI - Experiments
	Διαφάνεια 103: LSI - Discussion - Conclusions
	Διαφάνεια 104: LSI - Discussion - Conclusions
	Διαφάνεια 105: Indexing - Detailed outline
	Διαφάνεια 106: References

