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Text analytics- Detailed outline

◼ text
◼ problem

◼ full text scanning

◼ inversion

◼ signature files

◼ clustering 

◼ information filtering and LSI



Problem - Motivation

◼ Eg., find documents containing “data”, 
“retrieval”

◼ Applications:



Problem - Motivation

◼ Eg., find documents containing “data”, 
“retrieval”

◼ Applications:
◼ Web

◼ law + patent offices

◼ digital libraries

◼ information filtering



Problem - Motivation

◼ Types of queries:
◼ boolean (‘data’ AND ‘retrieval’ AND NOT 

...)



Problem - Motivation

◼ Types of queries:
◼ boolean (‘data’ AND ‘retrieval’ AND NOT 

...)

◼ additional features (‘data’ ADJACENT 
‘retrieval’)

◼ keyword queries (‘data’, ‘retrieval’)

◼ How to search a large collection of 
documents?



Full-text scanning

◼ Build a FSA; scan

c

a

t



Full-text scanning

◼ for single term:
◼ (naive: O(N*M))

ABRACADABRA text

CAB pattern



Full-text scanning

◼ for single term:
◼ (naive: O(N*M))

◼ Knuth Morris and Pratt (‘77)
◼ build a small FSA; visit every text letter once 

only, by carefully shifting more than one step

ABRACADABRA text

CAB pattern



Full-text scanning

ABRACADABRA text

CAB pattern

CAB

CAB

CAB

...



Full-text scanning

◼ for single term:
◼ (naive: O(N*M))

◼ Knuth Morris and Pratt (‘77)

◼ Boyer and Moore (‘77)
◼ preprocess pattern; start from right to left & 

skip!

ABRACADABRA text

CAB pattern



Full-text scanning

ABRACADABRA text

CAB pattern

CAB

CAB

CAB



Full-text scanning

ABRACADABRA text

OMINOUS pattern

OMINOUS

Boyer+Moore: fastest, in practice

Sunday (‘90): some improvements



Full-text scanning

◼ For multiple terms (w/o “don’t care” 
characters): Aho+Corasic (‘75)
◼ again, build a simplified FSA in O(M) time

◼ Probabilistic algorithms: ‘fingerprints’ 
(Karp + Rabin ‘87)

◼ approximate match: ‘agrep’ 
[Wu+Manber, Baeza-Yates+, ‘92]



Full-text scanning

◼ Approximate matching - string editing 
distance:

   d( ‘survey’, ‘surgery’) = 2

   = min # of insertions, deletions, substitutions 
to transform the first string

   into the second

         SURVEY

         SURGERY



Full-text scanning

◼ string editing distance - how to 
compute?

◼ A:



Full-text scanning

◼ string editing distance - how to 
compute?

◼ A: dynamic programming

      cost( i, j ) = cost to match prefix of 
length i of first string s with prefix of 
length j of second string t



Full-text scanning

if s[i] = t[j] then

      cost( i, j ) = cost(i-1, j-1)

else

      cost(i, j ) = min (

                    1 + cost(i, j-1) // deletion

                    1 + cost(i-1, j-1) // substitution

                    1 + cost(i-1, j) // insertion

                        )



Full-text scanning

Complexity: O(M*N) (when using a matrix 
to ‘memorize’ partial results)



Full-text scanning

Conclusions: 

◼ Full text scanning needs no space 
overhead, but is slow for large datasets



Text analytics- Detailed outline

◼ text
◼ problem

◼ full text scanning

◼ inversion

◼ signature files

◼ clustering 

◼ information filtering and LSI



Text - Inversion



Text - Inversion

Q: space overhead?



Text - Inversion

A: mainly, the postings lists



Text - Inversion

◼ how to organize the dictionary?

◼ stemming – Y/N?

◼ insertions? 



Text - Inversion

◼ how to organize the dictionary?

◼ B-tree, hashing, TRIEs, PATRICIA trees, ...

◼ stemming – Y/N?

◼ insertions? 



Text – Inversion

◼ other topics:

◼ Parallelism [Tomasic+,93]

◼ Insertions [Tomasic+94], [Brown+]

◼ ‘zipf’ distributions

◼ Approximate searching (‘glimpse’ [Wu+])



◼ postings list – more Zipf distr.: eg., 
rank-frequency plot of ‘Bible’

log(rank)

log(freq)

Text - Inversion

freq ~ 1 / (rank * ln(1.78V))



Text - Inversion

◼ postings lists

◼ Cutting+Pedersen

◼  (keep first 4 in B-tree leaves)

◼ how to allocate space: [Faloutsos+92]

◼ geometric progression

◼ compression (Elias codes) [Zobel+] – down 
to 2% overhead!



Conclusions

◼ needs space overhead (2%-300%), but 
it is the fastest



Text analytics- Detailed outline

◼ text
◼ problem

◼ full text scanning

◼ inversion

◼ signature files

◼ clustering 

◼ information filtering and LSI



Signature files

◼ idea: ‘quick & dirty’ filter



Signature files

◼ idea: ‘quick & dirty’ filter

◼ then,  do sequential scan on signature file 
and discard ‘false alarms’

◼ Adv.: easy insertions; faster than seq. scan

◼ Disadv.: O(N) search (with small constant)

◼ Q: how to extract signatures?



Signature files

◼ A: superimposed coding!! [Mooers49], 
...

m (=4 bits/word) ~ (=4 bits set to “1” and the rest left as “0”)

F (=12 bits sign. size)

the bit patterns are OR-ed to form the document signature 



Signature files

◼ A: superimposed coding!! [Mooers49], 
...

data              

actual match



Signature files

◼ A: superimposed coding!! [Mooers49], 
...

retrieval             

actual dismissal



Signature files

◼ A: superimposed coding!! [Mooers49], 
...

nucleotic             

false alarm (‘false drop’)



Signature files

◼ A: superimposed coding!! [Mooers49], 
...

‘YES’ is ‘MAYBE’

 ‘NO’ is ‘NO’



Signature files

◼ Q1: How to choose F and m ?

◼ Q2: Why is it called ‘false drop’?

◼ Q3: other apps of signature files?



Signature files

◼ Q1: How to choose F and m ?

m (=4 bits/word)

F (=12 bits sign. size)



Signature files

◼ Q1: How to choose F and m ?

◼ A: so that doc. signature is 50% full

m (=4 bits/word)

F (=12 bits sign. size)



Signature files

◼ Q1: How to choose F and m ?

◼ Q2: Why is it called ‘false drop’?

◼ Q3: other apps of signature files?



Signature files

◼ Q2: Why is it called ‘false drop’?

◼ Very old but fascinating story [1949]

◼ how to find qualifying books (by title word, 
and/or author, and/or keyword)

◼ in O(1) time? 

◼ without computers



Signature files

◼ Solution: edge-notched cards

...
...

1 2 40

•each title word is mapped 

to m numbers(how?)

•and the corresponding 

holes are cut out:



Signature files

◼ Solution: edge-notched cards

...
...

1 2 40

data

‘data’ -> #1, #39



Signature files

◼ Search, e.g., for ‘data’: activate needle 
#1, #39, and shake the stack of cards!

...
...

1 2 40

data

‘data’ -> #1, #39



Signature files

◼ Also known as ‘zatocoding’, from ‘Zator’ 
company.



Signature files

◼ Q1: How to choose F and m ?

◼ Q2: Why is it called ‘false drop’?

◼ Q3: other apps of signature files?



Signature files

◼ Q3: other apps of signature files?

◼ A: anything that has to do with 
‘membership testing’: does ‘data’ belong 
to the set of  words of the document?



Signature files

◼ UNIX’s early ‘spell’ system [McIlroy]

◼ Bloom-joins in System R* [Mackert+] 
and ‘active disks’ [Riedel99]

◼ differential files [Severance+Lohman]



Signature files - conclusions

◼ easy insertions; slower than inversion

◼ brilliant idea of ‘quick and dirty’ filter: 
quickly discard the vast majority of non-
qualifying elements, and focus on the rest.
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Text analytics- Detailed outline

◼ text
◼ problem

◼ full text scanning

◼ inversion

◼ signature files

◼ clustering 

◼ information filtering and LSI



Vector Space Model and 
Clustering

◼ keyword queries (vs Boolean)

◼ each document: -> vector (HOW?)

◼ each query: -> vector

◼ search for ‘similar’ vectors



Vector Space Model and 
Clustering

◼ main idea:

document

...data...

aaron zoodata

V (= vocabulary size)

‘indexing’



Vector Space Model and 
Clustering

Then, group nearby vectors together

◼ Q1: cluster search?

◼ Q2: cluster generation?

Two significant contributions:

◼ ranked output

◼ relevance feedback



Vector Space Model and 
Clustering

◼ cluster search: visit the (k) closest 
superclusters; continue recursively

CS TRs

TU TRs



Vector Space Model and 
Clustering

◼ ranked output: easy!

CS TRs

TU TRs



Vector Space Model and 
Clustering

◼ relevance feedback (brilliant idea) 
[Roccio’73]

CS TRs

TU TRs



Vector Space Model and 
Clustering

◼ relevance feedback (brilliant idea) 
[Roccio’73]

◼ How?

CS TRs

TU TRs



Vector Space Model and 
Clustering

◼ How?  A: by adding the ‘good’ vectors 
and subtracting the ‘bad’ ones

CS TRs

TU TRs



Outline - detailed

◼ main idea

◼ cluster search

◼ cluster generation

◼ evaluation



Cluster generation

◼ Problem:
◼ given N points in V dimensions,

group them



Cluster generation

◼ Problem:
◼ given N points in V dimensions,

group them



Cluster generation

We need

◼ Q1: document-to-document similarity

◼ Q2: document-to-cluster similarity



Cluster generation

Q1: document-to-document similarity

(recall: ‘bag of words’ representation)

◼ D1: {‘data’, ‘retrieval’, ‘system’}

◼ D2: {‘lung’, ‘pulmonary’, ‘system’}

◼ distance/similarity functions?



Cluster generation

A1: # of words in common

A2: ........ normalized by the vocabulary sizes

A3: .... etc

About the same performance - prevailing 
one:

cosine similarity



Cluster generation

cosine similarity:

 similarity(D1, D2) = cos(θ) = sum(v1,i * v2,i) / len(v1)/ len(v2)

θ

D1

D2



Cluster generation

cosine similarity - observations:
◼ related to the Euclidean distance

◼ weights vi,j : according to tf/idf

θ

D1

D2



Cluster generation

tf (‘term frequency’)
high, if the term appears very often in this 

document.

idf (‘inverse document frequency’)
penalizes ‘common’ words, that appear in 

almost every document



Cluster generation

We need

◼ Q1: document-to-document similarity

◼ Q2: document-to-cluster similarity

?



Cluster generation

◼ A1: min distance (‘single-link’)

◼ A2: max distance (‘all-link’)

◼ A3: avg distance

◼ A4: distance to centroid

?



Cluster generation

◼ A1: min distance (‘single-link’)
◼ leads to elongated clusters

◼ A2: max distance (‘all-link’)
◼ many, small, tight clusters

◼ A3: avg distance
◼ in between the above

◼ A4: distance to centroid
◼ fast to compute



Cluster generation

We have
◼ document-to-document similarity

◼ document-to-cluster similarity

Q: How to group documents into ‘natural’ 
clusters



Cluster generation

A: *many-many* algorithms - in two 
groups [VanRijsbergen]:

◼ theoretically sound (O(N^2))
◼ independent of the insertion order

◼ iterative (O(N), O(N log(N))



Cluster generation - ‘sound’ 
methods

◼ Approach#1: 
◼ dendrograms - create a hierarchy (bottom up or 

top-down) - choose a cut-off (how?) and cut

cat tiger horse cow
0.1

0.3

0.8



Cluster generation - ‘sound’ 
methods

◼ Approach#2: 
◼ minimize some statistical criterion (eg., 

sum of squares from cluster centers)
◼ like ‘k-means’

◼ but how to decide ‘k’?



Cluster generation - ‘sound’ 
methods

◼ Approach#3: 
◼ Graph theoretic [Zahn]:

◼ build MST;

◼ delete edges longer than 2.5* std of the local 
average



Cluster generation - ‘sound’ 
methods

◼ Result:

• variations

• Complexity?



Cluster generation - ‘iterative’ 
methods

General outline:

◼ Choose ‘seeds’ (how?)

◼ assign each vector to its closest seed 
(possibly adjusting cluster centroid)

◼ possibly, re-assign some vectors to 
improve clusters

Fast and practical, but ‘unpredictable’



Cluster generation

one way to estimate # of clusters k : the 
‘cover coefficient’ [Can+] ~ SVD



Outline - detailed

◼ main idea

◼ cluster search

◼ cluster generation

◼ evaluation



Evaluation

◼ Q: how to measure ‘goodness’ of one 
distance function vs another?

◼ A: ground truth (by humans) and

◼ ‘precision’  and ‘recall’



Evaluation

◼ precision = (retrieved & relevant) / retrieved

◼ 100% precision -> no false alarms

◼ recall = (retrieved & relevant)/ relevant

◼ 100% recall -> no false dismissals
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LSI - Detailed outline

◼ LSI
◼ problem definition

◼ main idea

◼ experiments



Information Filtering + LSI

◼ [Foltz+,’92] Goal: 
◼ users specify interests (= keywords)

◼ system alerts them, on suitable news-
documents

◼ Major contribution: LSI = Latent 
Semantic Indexing
◼ latent (‘hidden’) concepts



Information Filtering + LSI

Main idea:
◼ map each document into some ‘concepts’

◼ map each term into some ‘concepts’

‘Concept’:~ a set of terms, with weights, e.g.
◼ “data” (0.8), “system” (0.5), “retrieval” (0.6) -> 

DBMS_concept



Information Filtering + LSI

Pictorially: term-document matrix 
(BEFORE)

'data' 'system' 'retrieval' 'lung' 'ear'

TR1 1 1 1

TR2 1 1 1

TR3 1 1

TR4 1 1



Information Filtering + LSI

Pictorially: concept-document matrix 
and...

'DBMS-

concept'

'medical-

concept'

TR1 1

TR2 1

TR3 1

TR4 1



Information Filtering + LSI

... and concept-term matrix

'DBMS-

concept'

'medical-

concept'

data 1

system 1

retrieval 1

lung 1

ear 1



Information Filtering + LSI

Q: How to search, eg., for ‘system’?



Information Filtering + LSI

A: find the corresponding concept(s); and 
the corresponding documents

'DBMS-

concept'

'medical-

concept'

data 1

system 1

retrieval 1

lung 1

ear 1

'DBMS-

concept'

'medical-

concept'

TR1 1

TR2 1

TR3 1

TR4 1



Information Filtering + LSI

A: find the corresponding concept(s); and 
the corresponding documents

'DBMS-

concept'

'medical-

concept'

data 1

system 1

retrieval 1

lung 1

ear 1

'DBMS-

concept'

'medical-

concept'

TR1 1

TR2 1

TR3 1

TR4 1



Information Filtering + LSI

Thus it works like an (automatically 
constructed) thesaurus:

   we may retrieve documents that DON’T have 
the term ‘system’, but they contain almost 
everything else (‘data’, ‘retrieval’)



LSI - Detailed outline

◼ LSI
◼ problem definition

◼ main idea

◼ experiments



LSI – Some experiments

◼ 150 Tech Memos (TM) / month

◼ 34 users submitted ‘profiles’ (6-66 
words per profile)

◼ 100-300 concepts



LSI - Experiments

◼ four methods, cross-product of:
◼ vector-space or LSI, for similarity scoring

◼ keywords or document-sample, for profile 
specification

◼ measured: precision/recall



LSI - Experiments

◼ LSI, with document-based profiles, 
were better 

precision

recall

(0.25,0.65)

(0.50,0.45)

(0.75,0.30)



LSI - Discussion - Conclusions 

◼ Great idea, 

◼ to derive ‘concepts’ from documents

◼ to build a ‘statistical thesaurus’ automatically

◼ to reduce dimensionality

◼ Often leads to better precision/recall

◼ but:

◼ Needs ‘training’ set of documents

◼ ‘concept’ vectors are not sparse anymore



LSI - Discussion - Conclusions 

Observations

◼ Bellcore (-> Telcordia) has a patent

◼ used for multi-lingual retrieval

How exactly SVD works?



Indexing - Detailed outline

◼ primary key indexing

◼ secondary key / multi-key indexing

◼ spatial access methods

◼ fractals

◼ text

◼ SVD: a powerful tool

◼ multimedia

◼ ...
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