[MpOoYyPOaLUATIONOC KO ZUOTHHOTA
otov Naykoopuwo 1oto

NodelS
Express

Ap. Anuntploc KovutoountpOmMouAog

NodelS

NodelsS:
MepLBaAAov ektéleonc JavaScript (runtime) ypappévo o C++.
Mropetl va eppnveVoEeL KoL va eKTeEAEOEL JavaScript.
MNepthapPavel to NodelS API.

NodelS API:
YUuvoAo amo BLBAL0Brkec JavaScript xprioluwy yla tn dnuoupyia
TIPOYP O LATWV.

V8 (ot tov Chrome):
O diepunvevtnic JavaScript ("engine") mou xpnoluomnolei to NodelS
yla va SlepunVveUoEL, va LETAYAWTTIOEL KoL var ekTEAEDEL JavaScript
KwOLKAL.




NodelS, V8, NodelS APIs
neden

4 )

A 4

Parser .
JavaScript NodelS API
Execution runtime Implementation
Engine (Call stack,
Garbage memory, etc.)
Collector \_ %
% J

Multi-threaded apyLtektovikn (apache,

: v AN This thread is
v blocked while
it performs

This thread’s done
and the generated
response is being
delivered (finally)

This thread is blocked
while it waits for the P
database




Single-threaded nodelJS

There is only a o
single thread
running in an
event loop

This architecture
can handle way
more requests
at a time

) These other tasks will
signal when ready for
event loop response

eVTOAN node

EkteAwvtoc hode xwpic ovoua apyeiov tpExeL eva REPL
loop
- Mapopola pe TNV KOVooAa:
$ node
> let x = 5;
undefined
> X++
5
> X - ExtéAeon apyeiov JS:
6 $ node simple-script.js




Node yLa servers

server.js: const http = require('http');
const server = http.createServer();

server.on('request', function(req, res) {
res.statusCode = 200;
res.setHeader('Content-Type', 'text/plain');
res.end('Hello World\n');

});

server.on('listening', function() {
console. log('Server running!"');

});

server.listen(3000);

Node yLa servers

Include the HTTP NodelS | const http = require('http');

library
const server = http.createServer();
When the server gets a server.on('request', function(req, res) {
request, send back "Hello res.statusCode = 200;

World" in plain text res.setHeader('Content-Type', 'text/plain');

res.end('Hello World\n');

¥);
When the server is server.on('listening', function() {
started, print a log console.log('Server running!');
message }) .
’

Startlistening for | seryer,listen(3000);
messages!




Server response

© @ = localhost:3000

Hello World

< C (@ @ localhost:3000 Y 51 ¢

X Victoria Perso...

Node yLa servers

Ta NodelS server APIs sivail
XOUNAoU emunédou:
> To request PTLAXVETOL XELPWVOKTLKA

o To response PTLAXVETOL XELPWVOKTLKA

o Xpeltaletal oAUCS KwLKaC yLa
enegepyaoia

var http = require('http');

http.createServer(function(request, response) {

var headers = request.headers;

var method = request.method;

var url = request.url;

var body = [];

request.on('error’', function(err) {
console.error(err);

P.on('data’, function(chunk) {
body . push(chunk);

P.on('end’', function() {
body = Buffer.concat(body).toString(Q);

/ BEGINNING OF NEW STUFF

response.on('error', function(err) {
console.error(err);

D;

response.statusCode = 200;

response.setHeader('Content-Type', 'application/json');

> 1ines ab

var responseBody = {
headers: headers,
method: method,
url: url,
body: body

b+

response.write(JSON.stringify(responseBody));
response.end();
Ve sy ) could be rep

i9H
}).listen(8080);




Express)S

Express)S

Xprion tn¢ BLBAL0ONKNG Express)S yia server-side Asttoupyiec oto Node:

Xwpig ExpressJS: Me Express)S:

const http = require('http'); const express = require('express');

const app = express();

const server = http.createServer();

app.get('/", function (req, res) {
res.send('Hello World!');

}

server.on('request', function(req, res) {
res.statusCode = 200;
res.setHeader('Content-Type', 'text/plain');

res.end('Hello World\n');
1; app. listen(3000, function () {

console. log('Example app listening on port 3000!');

server.on('listening', function() { H
console.log('Server running!');
i

server. listen(3000);




Express)S

To Express 6ev mephapBavetol oto NodelS APIs.

const express = require('express');
const app = express();

module. js:327
throw err;

A

Error: Cannot find module 'express'
at Function.Module._resolveFilename

Xpelaletal eykataotoon HECW npm.

npm

To npm eykaBiotatal pall pe to node:

- npm: Node Package Manager*:
epyaleio mou eykaBlotd makéta (BLBALOONAKEG Kal epyaleia)
vpaupéva og JavaScript kat cupfata pe to NodelS

- Nok€ta pnopouv va BpeBouv oto online repository:
https://www.npmijs.com/




Mapadeypa Express

$ npm install express
$ node server.js
Example app listening on port 3000!

\ \

| NON e= |ocalhost:3000 x —\ * Victoria Perso...

& C O @ localhost:3000 Y 8] ¢

Hello World

Express)S

const express = require('express');
const app = express();

H require() ¢optwvel to Express)S module.

To module auto MePLEXEL Yo cuUVAPTNON TToU SNULOUPYEL Eva VED
Express Application object.




Express)S

app. listen(3000, function () {
console. log('Example app listening on port 3000!');

})

H Express)S 1isten() eivat tavtoonun pe tnv NodelS listen()
ouvaptnon:
- MNpooaptd tn dtadikacia Tou server 6To CUYKEKPLUEVO apLONO
port.
- Etol unvupata mou otéAvovtal oto port3000 tou A Ba
dpopoloyouvtal os autn tn Stadikacia server.
- Hnoapapetpoc-cuvaptnon ivat €va callback mov Ba ekteAeotel
otav o server £ekwvoeL vat akoUeL yio HTTP punvupata (otav
npoocaptnBet oto port 3000)

Express)S Routes

app.get('/', function (req, res) {
res.send('Hello World!"');

})

app method (path, handler)
KaBopilel tov XELptouo aro Tov server awtnudtwyv HTTP method (get |

post | ..)mou yivovtat oto URL/path
- H caIIback ocuvaptnon Ba ekteheotel KAOe dopd IOV UTIAPXEL EVL VEO
attnua.

- MNapadetypa: Otav untapéel GET request oto http://localhost:3000/,
anavinoe pe 1o keipevo "Hello World!"




Express)S Routes

MrmopoU e va €xoUHE Kol AAAa routes oto Express:

app.get('/', function (req, res) {
res.send('Main page!');

});

app.get('/hello', function (req, res) {
res.send('GET hello!');
};

app.post('/hello', function (req, res) {

res.send('POST hello!');
r);

I —

Emkowvwvia e Tov server




AmntootoAn HTTP requests

MNw¢ pmopovupe va otethovpe HTTP requests otov
server;

1. MAoniynon oto http://localhost:3000/<path> amno
Tov browser
> Opw¢, povo GET requests

2. Xpnon fetch()

° MmnopouUpe va oteiloupe onotodnmote tuno HTTP request
° Opwc: mpoBAnpa Aoyw CORS (http://localhost:3000 vs. file:///)

3. curl command-line tool
° S curl --request POST http://localhost:3000/hello

Cross-origin AUOELC

AUon 1: ©¢étoupe kedaAida Access-Control-Allow-Origin mptv tnv
OTTOCTOAN TOU response:

v [ server-with-static-files
app.get('/', function (req, res) {

» de_modul
res.header("Access—Control-Allow—0rigin", "x"); B node_modules

res.send('Main page!'); v [ public
¥); B fetch.html
B fetch.js
AUon 2: Ooptwon tou kKwdika fetch otatika oo tov idlo server: B serverjs

const express = require('express'); . /
P q . 3 )i Onote o server e€UTNPETEL:

const app = express(); http://localhost:3000/fetch.html
http://localhost:3000/fetch.js
relative to the static directory

app.use(express.static('public'));

app.get('/', function (req, res) {
res.send('Main page!');

NéeL otov server va efumnpetel
amevBeiag to apxela oto directory

public




AMayn pebodou otn fetch ()

app.post('/hello', function (req, res) {
res.send('POST hello!');

});

fetch('/hello', { method: 'POST' })
.then(onResponse)
.then(onTextReady) ;

server

client

MrmopoUpue va aAAaéoupe tnv pEBodo HTTP pEow MapapeETPOU OTN

fetch (), mou kaBopilel Eva options object:
method: kaBopileltnv HTTP péBodo tou attiuartog, m.x. POST,

PUT, PATCH, DELETE kArt.
- GET eival n mpokaBoplopévn tun (default).

Route parameters

MrmopoUpe va oploou e pia 1} TEPLOCOTEPEC

tapaUeETPoUC SpouoAoynonc peoca oto URL kat va TLg

dlaBacoupue amno to req.params (docs):

app.get('/flights/:from-:to', function (req, res) {
const routeParams = req.params;

° ZEKLVOUV LE :
° Tat. KoL —

gEppUnvevovTal const from = routeParams.from;
wC¢ £XOUV const to = routeParams.to;
res.send('GET: Flights from ' + from + ' to ' + to);
};

®  ® ' [ localhost:3000/flights/SFO-Ji x ' Victoria Perso...

< C O @ localhost:3000/flights/SFO-JFK @ ¢ N

GET: Flights from SFO to JFK




Query parameters

MropouUpe va SLafACOUUE TIC TAPAUETOOUC EPWTHUATOC
(?) a6 to req.query:

app.get('/hello', function (req, res) {
const queryParams = req.query;
const name = queryParams.name;
res.send('GET: Hello, ' + name);

};
Request: http://localhost:3000/hello?name=Dimitris
Response: GET: Hello, Dimitris

POST message body

Mrmopoupue va oteihoupe query parameters Kat peow POST
Elval Opw¢ Kakr MPAKTIKA. ZUvVOwC OTEAVOULE T
dedopgva oto message body

° ylLoL UTO Xpnotpomotope POST!

const message = {
name: 'Dimitris’,
email: 'koutsomi@ceid'};
const serializedMessage = JSON.stringify(message);
fetch('/helloemail', { method: 'POST', body: serializedMessage })
.then(onResponse)
.then(onTextReady) ;




Enetepyaoia POST pnvopotoc
e Express

app.post('/helloemail', function (req, res) { Xpeui{erou xstptcuéq WV

let data = ''; .
req.setEncoding('utf8'); events tou request object
reg.on('data’, function(chunk) { - data, end

data += chunk; > KAnpovopouUvtat amnod To
i nodeJS

req.on('end', function() {
const body = JSON.parse(data);
const name = body.name;
const email = body.email;
res.send('POST: Name: ' + name + ', email: ' + email);
});
});

body-parser

MrmopoU e va xpnotlponoljooupe tn body-parser BLBAL0BAKN:
const bodyParser = require('body-parser');
const jsonParser = bodyParser.json();

Aev avnkel oto nodelS API:
°$ npm install body-parser

Anploupyet evav JSON parser

° MepVIETAL WG TAPAUETPOC oTa routes mou Ba dextouv message body

app.post('/helloparsed', jsonParser, function (req, res) {

MpoomnéAaon const body = req.body;
anevBeiag pe const name = body.name;
10 req.body: const email = body.email;
res.send('POST: Name: ' + name + ', email: ' + email);
});

sl




>wpa pnvopatoc POST

T€Aoc xpeLaletol va mpooBeooupe JSON content-type kedaAideg oto
VLA tou Ba yivel POST amé tnv mAeupa tng fetch () :

const message = {
name: 'Dimitris’,
email: 'koutsomi@ceid'};
const fetchOptions = {
method: 'POST',

headers: {
'Accept': 'application/json',
'Content-Type': 'application/json'
h
body: JSON.stringify(message)
};
fetch('/helloparsed', fetchOptions) Response:
.then(onResponse) ' . . . .
 Ehisn(onTextReady)s EOST. N?ge.ozlmltrls, email:
outsomi@cel

2XEOLOOTLIKEC OUPAOELC

GET vs POST
o Xpnon GET yLa requests avaktnong Sedopevwy, oL
eyypadng
o Xpnon POST yiwa requests eyypadnic dedbopévwy, oxL
QVAKTNONG

Route vs Query params
o XpAon route MOPOUETPWV YLA TLC TIAPALETPOUG TIOU £lvall
QTOPOLTNTEC YLa TO request
o Xprion query MapapETPWY YL
o '0O0€&C €lVOLL TIPDOOILPETIKEG
o OL TIMEG TOUC UTTOPEL VAL £XOUV KEVA




Moapadeypo: AeEKO

Napadeypo

‘Eotw apxelo dictionary. json nou mepléxel {euyapla AEEewV/TLHWVY.
H edbapuoyn Ae€ikou emitpenel Tnv avalntnon pag AEENG Kot epndavion Tou
opLopov TNG.

| NON ) ** Dictionary lookup X Victoria Perso...

& C 1 @ localhost:3000 @ Y 5] ¢

English dictionary

Look up a word: | dog  search! |

The definition of dog is A quadruped of the genus Canis, esp.
the domestic dog (C.familiaris).




Avolntnon oto A€o - Server

// Load a JSON file containing english words.
const englishDictionary = require('./dictionary.json');

app.use(express.static('public'));

function onPrintWord(req, res) {
const routeParams = req.params;
const word = routeParams.word;

const key = word.toLowerCase();
const definition = englishDictionaryl[keyl;

res.send( The definition of ${word} is ${definition}’);

}
app.get('/print/:word', onPrintWord);

Fetch amo to Ae€ko - Client

async function onSearch(event) {
event.preventDefault();
const input = document.querySelector('#word-input');
const word = input.value.trim();
const result = await fetch('/print/' + word);
const text = await result.text():
<form id="search">

const re Look up a word: <input type="text" id="word-input"/>

results. <input type="submit" value="Search!">

</form>

const form = document.querySelector('#search');
form.addEventListener('submit', onSearch);




Amnokplon JSON

Av B€Aoupe va emtotpePoupe JSON, UmopoUE VO XPNOLULOTIOL)OOULLE
T uEBobo res. json(object) avtiywares.send(string):

app.get('/', function (req, res) {
const response = {
greeting: 'Hello World!',
awesome: true
}
res.json(response);

| ¥

H napdpetpog mou nepvietal otn res. json() Ba nmpénel va gival éva
QVTIKEipEVO JavaScript.

Artokplon JSON aro to Ae&Lko

function onLookupWord(req, res) {
const routeParams = req.params;
const word = routeParams.word;

const key = word.toLowerCase();
const definition = englishDictionaryl[keyl;

res.json({
word: word,
definition: definition
}H;
}
app.get('/lookup/:word', onLookupWord);




Fetch amo to Aeéiko (JSON)

async function onSearch(event) {
event.preventDefault();
const input = document.querySelector('#word-input');
const word = input.value.trim();

const results = document.auervSelector('#results'):

results.cla: <div id="results" class="hidden">
const resul’ The definition of <strong id="word"></strong> is:
const json : <blockquote id="definition"></blockquote>

</div>

results.classList.remove('hidden');

const wordDisplay = results.querySelector('#word"');
const defDisplay = results.querySelector('#definition');
wordDisplay.textContent = json.word;
defDisplay.textContent = json.definition;

Amoteleopa

® © @ = Dictionary lookup X Victoialpersos..

< C O @ localhost:3000 @ Y £

English dictionary

Look up a word: dog Search! |

The definition of dog is:

A quadruped of the genus Canis, esp. the domestic
dog (C.familiaris).




AroBnkevon 6edopEVwyY

©®  ©® | = pictionary lookup x \\'\\_\ Victoria Perso...
S C 0 @ localhost:3000 & % 8 ¢
[Mw¢ UIMopouE . o
VOL OTEW\OU LE English dictionary
6 86 O p'sva’ now Look up a word: dog Search!
010 }\E &LKO; The definition of dog is:
° I_I X va ) A quadruped of the genus Canis, esp. the domestic
TPOTIOTIOLI)OOUE dog (C.familiaris).
N va

TT p (o) O'e é oou u € TOV Modify the definition for this word:

OpLGu(') pLag )\égnq Word: dog

° Oa oTEIAOUE T Definition:
TIEPLEXOMEVA TNG A quadped of the gnus Cans,
' . the domestic dog (C.familiaris).
dopuoag pe POST osP

Xpnon tnc BLBALoBnRkne fs-extra ywa va
ypapoupe oto apyxeio dictionary.json.

o Ts:NodelS API BiBALoBRknN
o Xpnotuorolei callbacks
o fs-extra: npm BLBAL0OARKN
o Xpnowuomnolei callbacksH promises
o fs.writelson(fileName, object)




Server: eyypadrn 6€d0UEVWV

async function onSetWord(req, res) {
const routeParams = req.params;
const word = routeParams.word;
const definition = req.body.definition;
const key = word.toLowerCase();
englishDictionary[key] = definition;
await fse.writelson('./dictionary.json', englishDictionary);
res.json({ success: true});
}

app.post('/set/:word', jsonParser, onSetWord);

Client: fetch()

async function onSet(event) {
event.preventDefault();
const setWordInput = results.querySelector('#set-word-input"');
const setDefInput = results.querySelector('#set-def-input');
const word = setWordInput.value;

const def = setDefInput.value; <form id="set">

<h2>
Modify the definition for this word:
</h2>
Word: <input id="set-word-input" type="text" readonly/>

const message = {
definition: def

+

. <p>
const fetchOptions = { Definition:
method: 'POST', Jp>

headers: {

1 1a 1 1 4 3 1
Accept': 'application/json', <input type="submit" value="Set">
'Content-Type': 'application/json' <p id="status"></p>

<textarea id="set-def-input"></textarea>

}; </form>
body: JSON.stringify(message)

¥
await fetch('/set/' + word, fetchOptions);

Mnyég:V. Kirst, Stanford CS-193X course; Mozilla Development Network, https://developer.mozilla.org;

Connolly, Hoar, “Fundamentals of Web Development, 2nd ed




