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Big Data Processing

O Crawled web documents (at Google, Bing, Yahoo!)
B inverted indices (which pages contain each word)
®m graph representation of the links between pages

O Monitoring

B Web requests logs:
what were the most popular queries today?

m How did users click on ads in the last month?
(who should pay for adwords traffic?)

O Information retrieval, machine learning, Al.

O Numerical mathematics

O Bioinformatics...



Big Data processing: characteristics

O Most of these computations are conceptually straightforward on a single machine

O Butthe volume of data is HUGE

® Need to use many (1.000s) of computers together to get results in a
reasonable amount of time

B Management of parallelization, data distribution, failures handling, etc.
=> much more complex than the computation itself
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MapReduce

O Simplifying model for large-scale data processing
®m Inspired by functional programming paradigm
O LISP (LISt Processing)
B Adapted to embarrassingly parallel workloads

O Lots of concurrent operations on separate parts of the data with little or
no synchronization

B Runtime support for parallelization, data distribution, failures handling, etc.

O Implementations
B Google’s own C++ implementation
B Hadoop Java open-source implementation

B Many more in commercial and open-source products
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Outline

Some background on functional programming
MapReduce as seen by the programmer
Execution and runtime support

Examples

Some optimizations/extensions

O O0O0o0oan

Hadoop




Functional Programming

O FP = computation as application of functions

B Theoretical ground = lambda calculus

O How is it different from imperative programming?
B Traditional notions of ‘data’ and ‘instructions’ are not applicable

O Execution = evaluation of functions

m Functions in the sense of mathematical functions

O Referential transparency: no side effects in the function (such as
updating shared state) -- unlike Java or C

O Calling a function twice with the same arguments always returns the
same value

m Data flows are implicit in the program
O Different orders of execution are possible



Some functional languages

O OCaml, Scala, ML, Haskell, Scheme, F# (in MS .NET), etc.

Haskell ), EScala

A Purely Functional Language

O Some languages are hybrids between imperative and functional styles
m JavaScript, Lua, etc.

O In some aspects, a subset of SQL and Spreadsheets (Excel without VB macro) are
forms of functional programming languages

O Let’s take the example of LISP
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The example of LISP

O Lisp # Lost In Silly Parentheses

B Lists are a primitive data type

B Functions written in prefix notation
+ 1 2) - 3

(
(* 3 4) - 12

(sgrt (+ (* 3 3) (* 4 4))) - 5
(

(

define x 3) - X
* x 5) -5 15




Functions

O Functions = lambda expression bound to variables
(define foo

(lambda (x vy)
(sgqrt (+ (* x x) (* y v)))))

O Syntactic sugar for defining functions
B The expression above is equivalent to:

(define (foo x V)
(sqrt (+ (* x x) (* v v))))

O Once defined, functions can be applied:

(foo 3 4) - 5



Other features

O In Lisp/Scheme, everything is an s-expression
® No distinction between ‘data’ and ‘code’
B Easy to write self-modifying code

O Higher-order functions
® Functions that take other functions as arguments

(define (bar £ x) (£ (f x)))

Doesn’t matter what f is, just apply it twice.

(define (baz x) (* x x))
(bar baz 2) - 1o




Recursion is your friend

O Simple factorial example

(define (factorial n)
(if (= n 1)
1
(* n (factorial (- n 1)))))
(factorial ©6) —» 720

O Even iteration is written with recursive calls!

(define (factorial-iter n)
(define (aux n top product)
(1f (= n top)
(* n product)
(aux (+ n 1) top (* n product))))
(aux 1 n 1))
(factorial-iter 6) — 720
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Lisp — MapReduce

O But what does this have to do with MapReduce?
m After all, Lisp is about processing lists

O Two important concepts (first class higher order functions) in functional
programming

B Map: do something to everything in a list

B Fold: combine results of a list in some way
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O Map is a higher-order function

O How map works:
B Function is applied to every element in a list

m Resultis a new list

O Note that each operation is independent and, due to referential transparency (no
side effects of functions evaluation), applying f on one element and re-applying it
again will always give the same result
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Fold

O Foldis also a higher-order function

O How fold works:
® Accumulator set to initial value
Function applied to list element and the accumulator
Result stored in the accumulator
Repeated for every item in the list

Result is the final value in the accumulator

FRYYYY
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Map/Fold in action

O Simple map example:

(map (lambda (x) (* x x))
'(1 2 3 4 5))
- '"(1 4 9 1lo6 25)

O Fold examples:

(fold + 0 ' (
(fold * 1 ' (

O Sum of squares:
(define (sum-of-squares V)
(fold + 0 (map (lambda (x) (* x x)) Vv)))

(sum-of-squares '"(1 2 3 4 5)) - 55
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Lisp — MapReduce

O Let’s assume a long list of records: imagine if...
B We can parallelize map operations

B We have a mechanism for bringing map results back together in the fold
operation

O That’'s MapReduce!

O Observations:
B No limit to map parallelization since maps are independent

B We can reorder folding if the fold function is commutative and associative




Typical processing

Iterate over a large number of records

Extract something of interest from each N\P\P
Shuffle and sort intermediate results \)GE
Aggregate intermediate resuItsRED
Generate final output

OO 000

O

Key idea: provide an abstraction at the point of these two operations, make others
implicit




MapReduce: Programmers’ View

O Programmers specify two functions:
® map (k, v) 2 <k’, v'>*
® reduce (k’, V') & <k, v'>*

O All v/ with the same k’ are reduced together

O Usually, programmers also specify a partition function:
B partition (k’, number of partitions n) = partition for k’
m Often a simple hash of the key, e.g., hash(k’) mod n
m Allows reduce operations for different keys in parallel

O MapReduce jobs are submitted to a scheduler that allocates the machines and
deals with scheduling, fault tolerance, etc.
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A divide and conquer approach

Data Store

initial (k, a-']- pairs

initial tk: V) pairs

initial [k V) pairs initial (k, v] pairs
WGHKEHS ---------- - - - -
k1, values... k1, values... k1, values... k1, values...
k2 wvalues... k2 wvalues... k2 values... k2 wvalues...
k3, values... k3, values... k3, values... k3, values...

i ’ . v

Barrier: aggregate values by keys

k1. values... k2, values... k3, values...

' ' '

WORKERS------------------ =| REDUCE REDUCE REDUCE

final kK1 value(s) final k2 value(s) final k3 value(s)




When is MapReduce relevant

O Good choice for:
m Log files indexing/analysis
m Sorting huge data volumes
® Image processing, etc.

O Bad choice for:
B Computing the first 1,000,000 digits of t
B Computing Fibonacci series
B Replacing MySQL




Job Execution on a MapReduce cluster

O The job is submitted to a master process
B The master orchestrates its execution

O Each node supports one or more workers
O Each worker can handle a map or reduce job when instructed by the master

O The communication is based on key/value pairs
B e.g., a DHT or key-value store

m Store the location of data in the DHT and use direct communication between
workers

O Map jobs get the data from a storage layer
®m unstructured: file system (e.g., Google File System, HDFS, or local file system)

B (semi-)structured: local database (e.g., MySQL)
or distributed database (e.g., Google’s BigTable)
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DHTs

O Distribute (partition) a hash table data structure across a large number of servers

m Also called, key-value store key, value

(

) Sorted Key-

- value stores
into DHT table

]

O Key identifier = SHA-1(key), Node identifier = SHA-1(IP address)
« Each key_id is mapped to the node_id with the smallest node_id >= key _id

O Two operations
m put(key, data); // insert “data” identified by “key”
m data = get(key); // get data associated to “key”
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m-bit kAewowa (Key_IDs xat Node_IDs) nave
otov 0aktoAto Chord

*Key_ID = SHA-1(key) mod 2™

*Node_ID = SHA-1(IP address)
mod 2™

a K102 N14
nK24, K30->N32

nK38-> N38

nK54->N56




Distributed Hash Tables (DHTs) (cont’d)

O Just need a lookup service, i.e., given a key (ID), map it to machine n

n = lookup(key);

O Invoking put() and get() at node m

m.put(key, data)

{
n= lookup(key); // get node

o

n” mapping “key”
n.store(key, data); // store data at node “n”

}

data = m.get(key)
{

n=lookup(key); // get node “n” storing data associated to “key”
return n.retrieve(key); // get data stored at “n” associated to “key”

}
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Execution overview

0. The MapReduce library
splits the input files into M
pieces (typically 16MB to
64MB)
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la. The library starts many
processes on the cluster

1b. One of the process is
special -- it is the master
that orchestrates the
execution
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Execution overview
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Execution overview
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Execution overview
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Execution overview
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MapReduce data tlow

O Each map job gets part of the data to process
B |t outputs a set of <key,value> pairs to an intermediate storage
®m Each key is associated to a set of values

O The reduce jobs start once all map jobs have completed
m (barrier)

B Itis often possible to aggregate partially the values before all maps are
complete (e.g., on the same machine as the map job)

O see the combine operation in a few slides

O Each reduce job gets the set of values associated to one key
m Shuffling/sort operation aggregates the map results for each key

B Each reduce job gets a set of keys and the associated values for each of the
keys

O Using an iterator provided by the MapReduce implementation
® And outputs a final <key,value(s)> pair (or a boolean, a log, ...)



MapReduce Examples
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Example 1: word count

O Count how many times each word appears in a text corpus

Map (String input key, String input value) :
// input key: document name
// input value: document contents
for each word w in input values:
EmitIntermediate(w, "1");

Reduce (String key, Iterator intermediate values):
// key: a word, same for input and output
// intermediate values: a list of counts
int result = 0;
for each v in intermediate values:
result += ParselInt (v);
Emit (AsString (result));

(complete C code in the OSDI MapReduce paper)



Example 1: word count

____________________

(d1, ABD) (A, 2)
(d2, ABCD) (8, 3) i
(d3, ‘BCD) (A, 3) g
(B, 4) |
(A, 3) § (A, 7)
(d4, ‘ABC’) (B, 3) E> (B, 15)

ol U S

(d5, ACD))
(d6, ADB B)
(d7, DBA)

____________________

€2 | (,8)
(b, 3) E> (D,7)

(d8, BB C)) (C,2)
(d9, AACC) (D, 3)
(d10, 'BAD C’) (C, 4)
(D, 1)

ot U S

R=2 reducers



MapReduce Programming Model

O Data type: key-value records

O Map function:

(K., V. ) =>list(K.

in’ inter’ |nter)

O Reduce function:

list(V. ...)) =>list(K

inter out’ Vout)

( inter?
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Example: Word Count

def mapper(line):
foreach word in line.split():
output(word, 1)

def reducer(key, values):
output(key, sum(values))
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Word Count Execution

Input Map Shuffle & Sort Reduce Output
] the, 1 y
the brown, 1 brown,
quick 2
brown fox, 2
fox how, 1
now, 1
the fox the, 3
ate the 1
mouse ate, 1
ate, 1 cow, 1
how , mouse, 1 mouse,
now 1
brown quick, 1
COowW
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An Optimization: The Combiner

O

Local reduce function for repeated keys produced by same map
For associative ops. like sum, count, max
Decreases amount of intermediate data

Example: local counting for Word Count:

def combiner(key, values):
output(key, sum(values))
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Word Count with Combiner

Input Map Shuffle & Sort Reduce Output
[] the, 1 y
the brown, 1 brown,
quick 2
brown fox, 2
fox how, 1
I now, 1
the fox 32
ate the
mouse
| ] ate, 1
cow, 1
how brown, 1 mouse,
now 1
cow




MapReduce Execution Details

O Mappers preferentially scheduled on same node or same rack as their input block
B Minimize network use to improve performance

O Mappers save outputs to local disk before serving to reducers
m Allows recovery if a reducer crashes

® Allows running more reducers than # of nodes
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Typical Hadoop Cluster

Aggregation switch

<—» 8 gigabit
) <—» 1 gigabit
Rack switch

40 nodes/rack, 1000-4000 nodes in cluster
1 Gbps bandwidth in rack, 8 Gbps out of rack

Node specs (Facebook):
8-16 cores, 32-48 GB RAM, 10x2TB disks
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Example 2: distributed grep

O Grep reads a file line by line, and if a line matches a pattern (e.g., regular
expression), it outputs the line

O Map function
®m read a file or set of files
B emit a line if it matches the pattern

O key = original file (or unique key if origin file does not matter)

O Reduce function

®m identity (use intermediate results as final results)
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Example 3: URL access frequency

O Input: log of web page requests (after a query)

O Output: how many times each URL is accessed
B Variant: what are the top-k most-accessed URLs?

O Map function
B Parse the log, output a <URL, 1> pair for each access

O Reduce function
®m For each key URL, a list of n “1” is associated (i.e., added)

® Emit a final pair <URL, n>




Example 4: Reverse Web-link graph

O Get all the links pointing to some page
B This is the basis for the PageRank algorithm!

O Map function

B output a <target,source> pair for each link to target URL in a page named
source

O Reduce function

B Concatenate the list of all source URLs associated with a given target URL and
emits the pair:
<target,list(sources)>




Example 5: Inverted index

O Get all documents containing some particular keyword
B Used by the search mechanisms of Google, Yahoo!, etc.
m Second input for PageRank

O Map function

®m Parse each document and emit a set of pairs
<word, document|D>

O Reduce function
m Take all pairs for a given word
m Sort the document IDs

B Emit a final <word,list(document IDs)> pair




Example 5: Inverted index

To be, or not to be To beisto do

<to,a>,<be,a>,<or,a>, <to,b>,<be,b>,<is,b>,
<not,a>,<to,a>,<be,a> <to,b>,<do,b>

<be,<a,a,b>>,<do,<b>>, <not,<a>>,<or,<a>>,
<is,<b>> <to,<a,a,b,b>>

-

reduce

<be,<a,b>>,<do,<b>>,<is,<b>>,<not,<a>>,<or,<a>>,<to,<a,b>>

reduce




Ex. 6: Avg. max temp per calendar day

<200001011200,10> <200101011500,21>
<200001011230,12>... <200101011530,21>...
Illiﬁiill lIIHEEIII
<20000101,10> <20010101,21>
<20000101,12>... <20010101,21>
<20000101,<10,12,...>>... <20010101,<21,21,...>>...

reduce reduce

<20000101,15>,<20010101,23>...




Ex. 6: Avg. max temp per calendar day

<20000101,15> <20000201,21>
<20010101,23>... <20010201,22>...
<0101,15> <0201,21>
<0101,23>... <0201,22>
<0101,<15,23,...>>... <0201,<21,22,...>>...

reduce

< L

<0101,17>,<0201,23>...




MapReduce Challenges
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MapReduce: (some) challenges

O Fault tolerance

O Overall performance and slow tasks

O Bandwidth costs
® Data locality

B Combiner functions: local pre-reduction




Fault tolerance

O Worker failure
B The Master periodically pings each worker
m If unresponsive, reassigns to another one
O The map and reduce operations are stateless: restart is easy to implement

O If transient failure of a Map or Reduce job, no problem of duplicates as
the intermediate results are stored on local disk

O Failure during the send to the global store: atomic commit protocol for
results

O Master failure
m Periodically checkpoint the state of the master to the global storage
m If master fails, restart from last checkpoint

O May lead to duplicate work for workers, but seldom happens




Slow tasks

O Some machines may be responsive but slow
m e.g., if other jobs are scheduled by another MR master
B Bottleneck for the entire job execution time

O When a complete MR is close to execution (either map or reduce phase)
B Re-allocate the non-finished jobs on the fastest nodes

m Let the first node that finishes commit its results to the reduce workers or to
the global file system




Data locality

O The datais stored in a distributed file system
m For Google: GFS
® For Hadoop: HDFS (open source)

O The splits are GFS/HDFS blocks

O The master gets the location of a block from GFS and allocates the map job on the
same node or on a close-by node




Bandwidth saving

O Moving the intermediate key,value pairs from map workers to reduce workers
costs bandwidth

O Some reduce operations can be combined
m e.g., counting

O Some others cannot
B e.g., top-k computation

O If possible to combine, execute a combiner function on the same node as the map
worker to pre-reduce the data

B Often the same function as the final reduce job

B Example: in the word-count MR job, apply the reduce job locally to all
<word,1> pairs to send <word, n> pairs to the reduce job




Hadoop
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Hadoop

O Hadoop is the most known open-source MapReduce implementation
B Lots of contributions by Yahoo!, now an Apache foundation project
m Written in Java
B Uses the HDFS file system (amongst others)
B Many extensions and optimizations over the original Google paper

O A MapReduce implementation of choice when using Amazon’s cloud services
B EC2: rent computing power and temporary space

m S3:rentlong term storage space
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HDFS - Hadoop Distrib. File System

O Adistributed, scalable file system for M-R applications
®m Distributed: Runsin a cluster
m Scalable: 10K nodes, 100M files, 10PB storage Namenode
B Closed-source optimizations
|

HDFS provides a single file system view to the whole
cluster

O Files are split up in blocks
m Typically 128 MB
m Each block is replicated on multiple DataNodes (typically 3)
® Block placement is rack-aware

W

(2] W )

(3
Datanodes
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HDFS/MapReduce Architecture

O Master/Slave Architecure

O HDFS
m A centralized NameNode controls

multiple DataNodes masker alave
B NameNode: keeps track of which
DataNode stores which block task task
“« ” . tracker tracker
B DataNodes: “dumb” servers storing raw ; )
file chunks
MapReduce job
layer tracker
D MapReduce EEEEEEEEEEEEEEEEEEpEEEEEEEEE NI IR NN RN E NS E N RN EEEEEE
m A centralized JobTracker controls HDFS name
multiple TaskTrackers layer node |
data --_-aata
O Placement node
m NameNode and JobTracker run on the
master multi-node cluster
m DataNode and TaskTracker run on
workers

m Data locality is exploited



Input

MapReduce

ShufflefSort

/ |

Output

Output

16/5/2020
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Hadoop: big picture

0. Allocate Hadoop cluster
1. Scp data to cluster

/ \move data into HDFS

3. Develop code locally

4. Submit MapReduce job B FE ¥ ¥
4a. Go back to Step 3

~—

Uh oh. Where did the data go?

courtesy of Prof. Lin, university of Maryland, CC-BY-NC-SA (USA)

Your Hadoop Cluster

5. Move data out of HDFS
6. Scp data from cluster

7. Clean up!
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On Amazon: EC2 and S3

Copy from S3 to HDFS

EC2 / 'S3
(The Cloud) (Persistent Store)

Your Hadoop Cluster

B

Copy from HFDS to S3




Hadoop Usecases
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Use cases 1/3

O NY Times
@ljgNgmﬁnrk@imgg m Large Scale Image Conversions
®m 100 Amazon EC2 Instances, 4TB raw TIFF
data

m 11 Million PDF in 24 hours and 240S

O Facebook
B Internal log processing
B Reporting, analytics and machine learning

m Cluster of 1110 machines, 8800 cores and
12PB raw storage

® Open source contributors (Hive)

facebook.

O Twitter
®m Store and process tweets, logs, etc
® Open source contributors (Hadoop-Izo)




Use cases 2/3

O Yahoo
® 100.000 CPUs in 25.000 computers
YAHOO-’® m Content/Ads Optimization, Search index
B Machine learning (e.g. spam filtering)
® Open source contributors (Pig)

O Microsoft
- n ® Natural language search (through Powerset)
M’croSOft ® 400 nodes in EC2, storage in S3

® Open source contributors (!) to HBase

O Amazon
amazon m ElasticMapReduce service
web services” B On demand elastic Hadoop clusters for the
Cloud
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Use cases 3/3

O AOL
B ETL processing, statistics generation

’ ® Advanced algorithms for behavioral
Ao'l analysis and targeting

O Linkedln

m Used for discovering People you May
Know, and for other apps

m 3x30 node cluster, 16GB RAM and 8TB

Linked 7))

storage
00 O Baidu
00 m Leading Chinese language search engine
BaichBE

m Search log analysis, data mining
m 300TB per week
® 10 to 500 node clusters



Conclusion




Conclusion

O MapReduce is a powerful simplifying abstraction for programming large-scale data
processing

m Naturally suited to embarrassingly parallel jobs

O But is not adapted to all types of jobs
(e.g., jobs with data interdependencies)

O Master = single point of failure

O Extensions

B Process streams of data
(StreamMine project, StreamMapReduce)

O Real-Time support and complex event processing
B Decentralize the master and use a collaborative scheme

O Build the master using a DHT and replication for fault tolerance
B Automatic MapReduce-ization

O Some work already on automatic MR code generation from SQL queries
(Prof. W. Zwaenepoel @ EPFL - EuroSys 2011)



