How to Use Python Lambda Functions

The identity function, a function that returns its argument, is expressed with a
standard Python function definition using the keyword def as follows:

>>>

>>> def identity(x):return X

identity() takes an argument x and returns it upon invocation.

https://en.wikipedia.org/wiki/Identity_function
https://realpython.com/python-keywords/

identity function

In contrast, if you use a Python lambda construction, you get the
following:

>>>

>>> lambda Xx: X

In the example above, the expression is composed of:
The keyword: 1ambda
A bound variable: x
A body: x

Note: In the context of this article, a bound variable is an argument to a lambda function.

In contrast, a free variable is not bound and may be referenced in the body of the expression. A free variable
can be a constant or a variable defined in the enclosing scope of the function.

You can write a slightly more elaborated example, a function that adds 1 to an argument, as follows:

https://en.wikipedia.org/wiki/Identity_function
https://realpython.com/python-namespaces-scope/

identity function

You can write a slightly more elaborated example, a function
that adds 1 to an argument, as follows:

>>>
>>> lambda x: x + 1

You can apply the function above to an argument by surrounding the
function and its argument with parentheses:

>>>

>>> (lambda x: x + 1)(2)
3

https://en.wikipedia.org/wiki/Identity_function

REDUCTION

Reduction is a lambda calculus strategy to compute the value of the expression. In the current example, it
consists of replacing the bound variable x with the argument 2:

lambda 2: 2 + 1

(lambda x: x + 1)(2)

2 +1

=3
Because a lambda function is an expression, it can be named. Therefore you could write the previous code as
follows:
>>>
>>> add_one = lambda x: x + 1

>>> add_one(2)

3
The above lambda function is equivalent to writing this:

def add_one(x): return x + 1

https://en.wikipedia.org/wiki/Reduction_strategy_%28lambda_calculus%29

Multi-argument functions

These functions all take a single argument. You may have noticed that, in the definition of the lambdas,
the arguments don’t have parentheses around them. Multi-argument functions (functions that take more
than one argument) are expressed in Python lambdas by listing arguments and separating them with a
comma (,) but without surrounding them with parentheses:

>>>

>>> full name = lambda first, last: f'Full name: {first.title()}
{last.title()}’

>>> full name('guido’, 'van rossum')
"Full name: Guido Van Rossum’

The lambda function assigned to full _name takes two arguments and returns a string interpolating the
two parameters first and last. As expected, the definition of the lambda lists the arguments with no
parentheses, whereas calling the function is done exactly like a normal Python function, with
parentheses surrounding the arguments.

https://realpython.com/python-strings/

F-string functions

https://note.nkmk.me/en/python-f-strings/
s = 'abc’

(f'right : {s:*>8}')
(f'center: {s:*/"8}')

(f'left : {s:*<8Y})

right : *****abc

center: **abc***

left : abc*****

Python Lambda Map Functions

1=[1,2,3,4,5];
sumOfList=0

for i in 1:
sumOfList+=i*];
print sumOfList

1 = [1,2,3,4,5]
print(sum(i*i for i in 1))

sum(map(lambda x:x*x,1))

1=[1,2,3,4,5]
sum(map(lambda x:x*x,l))

Python Lambda Reduce Functions

The reduce(fun,seq) function is used to apply a particular function passed in its argument to all
of the list elements mentioned in the sequence passed along. This function is defined in
“functools” module.

At first step, first two elements of sequence are picked and the result is obtained.

Next step is to apply the same function to the previously attained result and the
number just succeeding the second element and the result is again stored.

This process continues till no more elements are left in the container.

The final returned result is returned and printed on console.

|2 364

¥
from functools import reduce Sum () BH +/ Tedce()

reduce(lambda x,y:x+y, [2,3,6,9]) 20

Python Lambda Map-Reduce Functions

from functools import reduce
reduce(lambda x,y:x+y, [2,3,6,9])
reduce(lambda X, y: x+ y*y, [1, 2, 3, 4, 5])
reduce(lambda x,y: x+y*y,l)

1=[1,2,3,4,5]
sum(map(lambda x:x*x,l))
from functools import reduce
reduce(lambda x,y: x+y*y,l)

Map(f(x),L): To x capwvel OAa ta otolxeia TtnC AloTac Kot yLa Kabe x
epappoletal n f()=2 f.e..x=x*x for each x in L

Reduce(f(x,y), L): To x elvait o accumulator pe apyikn twun 0, To y copwvel
o\a Ta otoLyela TtNC Alotac ko yia kaBe y epappoletat n f() n twpn tng
oTtoLaC MPooTIBETOL OTNV TPONYOUEVN TLUN TOU X KOL TO OTIOTEAECUOL
EavarmoBnkeleTol OTO X.

f.e..x=0, x=x+y*y for each y in L

Map and filter() Functions

det even(num):
if num % 2 == 9:
return num

11 = [5, 7, 8, 10, 11, 13, 15, 16, 17, 19, 20]
m = map(even, 11)
print(list(m))

Map and filter() Functions

[None, None,]8, 10, [None, None, None, |16, [None, None, j20]

4 N
We are getting 'None' if the

number is not even. Do we
want this? No. We want to get
only the even numbers.

\ 4

Map and filter() Functions

define a function that will return True, if the number 1is even
else, it will return False
fdef even(num): h

A function that will
return True if the
condition is satisfied
for an even number,
else it will return

False

if num % 2 == O:
return True

m
|—J
LM
D

\ return False

11 = [5, 7, 8, 1@, 11, 13, 15, 16, 17, 19, 20]
m = filter(even, 11)
print(list(m))

The returned
numbers are only
even numbers. The
filter() function

m = fil‘:er*{, 11)) returns only the

alamantc far whirh

[8, 10, 16, 20]

e

Map and filter() Functions

L e J 1\ foraneven number,)
return False . else it will return /
N False _~
11 = [5, 7, 8, 1@, 11, 13, 15, 16, 17, 19, 28] ~—_ = _—
m = filter(even, 11) —
print(list(m)) //"The returned ‘“x\\
'8, 10, 16, 20] /" numbers are only \\
- —_ —————/ evennumbers. The
T filter() function \
m = filter(feven],/11)) T returns only the |
elements for which /
\ the condition in the
“_ function 'even'is /
\\x True. -

— _

	Slide 1: How to Use Python Lambda Functions
	Slide 2: identity function
	Slide 3: identity function
	Slide 4: REDUCTION
	Slide 5: Multi-argument functions
	Slide 6: F-string functions
	Slide 7: Python Lambda Map Functions
	Slide 8: Python Lambda Reduce Functions
	Slide 9: Python Lambda Map-Reduce Functions
	Slide 10: Map and filter() Functions
	Slide 11: Map and filter() Functions
	Slide 12: Map and filter() Functions
	Slide 13: Map and filter() Functions

