Πανεπιστήμιο Πατρών

Συναρτησιακός Προγραμματισμός για Επεξεργασία Δεδομένων Μεγάλης Κλίμακας με χρήση Map/Reduce Functions

> MapReduce Γ.Γαροφαλάκης. Σ.Σιούτας

MapReduce

Big Data Processing

- Web Crawling (at Google, Bing, Yahoo!)
 - inverted indices (which pages contain each word)
 - graph representation of the links between pages
- Monitoring
 - Web requests logs: what were the most popular web pages today?
 - How many users clicked on ads in the last month?

- Sorting of 100 Pbytes numbers...
- MIN, MAX, SUM, AVG of 100 Pbytes numbers...
- Range Queries of 100 Pbytes numbers...

Big Data processing: characteristics

- Most of these computations are conceptually straightforward on a single machine
- But the volume of data is HUGE
 - Need to use many (1.000s) of computers together to get results in a reasonable amount of time
 - Management of parallelization, data distribution, failures handling, etc.
 - => much more complex than the computation itself

MapReduce

- Simplifying model for large-scale data processing
 - Inspired by functional programming paradigm
 - LISP (LISt Processing)
 - Adapted to embarrassingly parallel workloads
 - Lots of concurrent operations on separate parts of the data with little or no synchronization
 - Runtime support for parallelization, data distribution, failures handling, etc.
- Implementations
 - Google's own C++ implementation
 - Hadoop Java open-source implementation
 - Many more in commercial and open-source products

Outline

- Some background on functional programming
- MapReduce as seen by the programmer
- Execution and runtime support
- Examples
- Some optimizations/extensions
- □ Hadoop

Functional Programming

- FP = computation as application of functions
 - Theoretical ground = lambda calculus

- How is it different from imperative programming?
 - Traditional notions of 'data' and 'instructions' are not applicable
 - Execution = evaluation of *functions*
 - Functions in the sense of mathematical functions
 - Referential transparency: no side effects in the function (such as updating shared state) -- unlike Java or C
 - □ Calling a function twice with the same arguments always returns the same value
 - Data flows are implicit in the program
 - □ Different orders of execution are possible

The example of LISP

- Lisp ≠ Lost In Silly Parentheses
 - Lists are a primitive data type

Functions written in prefix notation

$$(+ 1 2) \rightarrow 3$$

 $(* 3 4) \rightarrow 12$
 $(sqrt (+ (* 3 3) (* 4 4))) \rightarrow 5$
 $(define x 3) \rightarrow x$
 $(* x 5) \rightarrow 15$

Functions

Functions = lambda expression bound to variables

- Syntactic sugar for defining functions
 - The expression above is equivalent to:

```
(define (foo x y)
  (sqrt (+ (* x x) (* y y))))
```

Once defined, functions can be applied:

$$(foo 3 4) \rightarrow 5$$

Other features

- In Lisp/Scheme, everything is an s-expression
 - No distinction between 'data' and 'code'
 - Easy to write self-modifying code
- Higher-order functions
 - Functions that take other functions as arguments

```
(define (bar f x) (f (f x)))
```

Doesn't matter what f is, just apply it twice.

```
(define (baz x) (* x x))
(bar baz 2) \rightarrow 16
```

Recursion is your friend

Simple factorial example

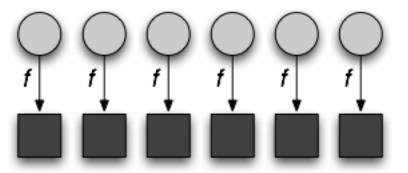
■ Even iteration is written with recursive calls!

Lisp → MapReduce

- But what does this have to do with MapReduce?
 - After all, Lisp is about processing lists
- Two important concepts (first class higher order functions) in functional programming
 - Map: do something to everything in a list
 - Fold: combine results of a list in some way

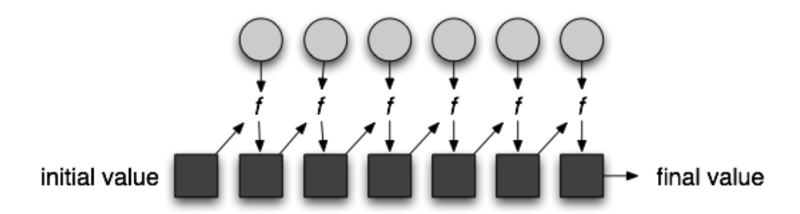
Map

- Map is a higher-order function
- How map works:
 - Function is applied to every element in a list
 - Result is a new list
- Note that each operation is independent and, due to referential transparency (no side effects of functions evaluation), applying f on one element and re-applying it again will always give the same result



Fold

- □ Fold is also a higher-order function
- How fold works:
 - Accumulator set to initial value
 - Function applied to list element and the accumulator
 - Result stored in the accumulator
 - Repeated for every item in the list
 - Result is the final value in the accumulator



Map/Fold in action

Simple map example:

```
(map (lambda (x) (* x x))

'(1 2 3 4 5))

\rightarrow '(1 4 9 16 25)
```

■ Fold examples:

```
(fold + 0 '(1 2 3 4 5)) \rightarrow 15
(fold * 1 '(1 2 3 4 5)) \rightarrow 120
```

■ Sum of squares:

```
(define (sum-of-squares v)

(fold + 0 (map (lambda (x) (* x x)) v)))

(sum-of-squares '(1 2 3 4 5)) \rightarrow 55
```

Lisp → MapReduce

- Let's assume a long list of records: imagine if...
 - We can parallelize map operations
 - We have a mechanism for bringing map results back together in the fold operation
- That's MapReduce!
- Observations:
 - No limit to map parallelization since maps are independent
 - We can reorder folding if the fold function is commutative and associative

MapReduce: Programmers' View

- Programmers specify two functions:
 - \blacksquare map $(k, v) \rightarrow \langle k', v' \rangle^*$
 - reduce $(k', v') \rightarrow \langle k'', v'' \rangle^*$
 - □ All v' with the same k' are reduced together
- Usually, programmers also specify a partition function:
 - partition (k', number of partitions n) → partition for k'
 - Often a simple hash of the key, e.g., hash(k') mod n
 - Allows reduce operations for different keys in parallel
- MapReduce jobs are submitted to a scheduler that allocates the machines and deals with scheduling, fault tolerance, etc.

MapReduce Programming Model

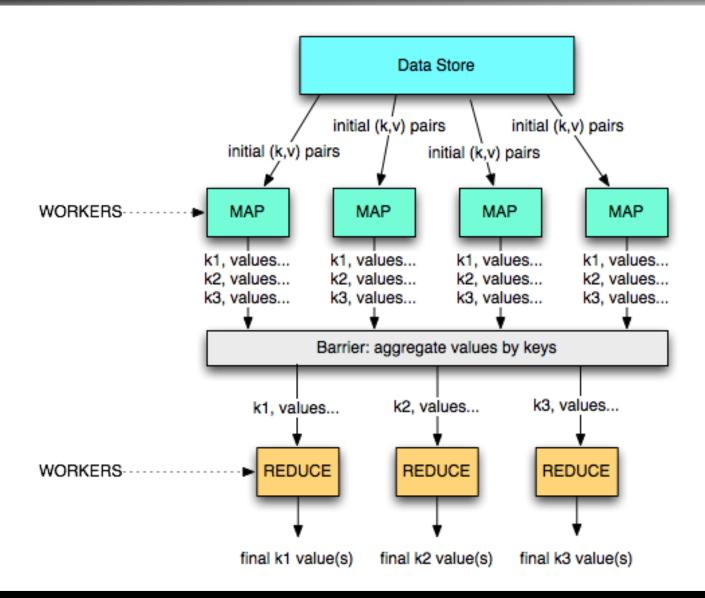
- □ Data type: key-value *records*
- Map function:

$$(K_{in}, V_{in}) \rightarrow list(K_{inter}, V_{inter})$$

Reduce function:

$$(K_{inter}, list(V_{inter})) \rightarrow list(K_{out}, V_{out})$$

A divide and conquer approach



MapReduce Examples

Example 1: Word Count

```
def mapper(line):
    foreach word in line.split():
        output(word, 1)

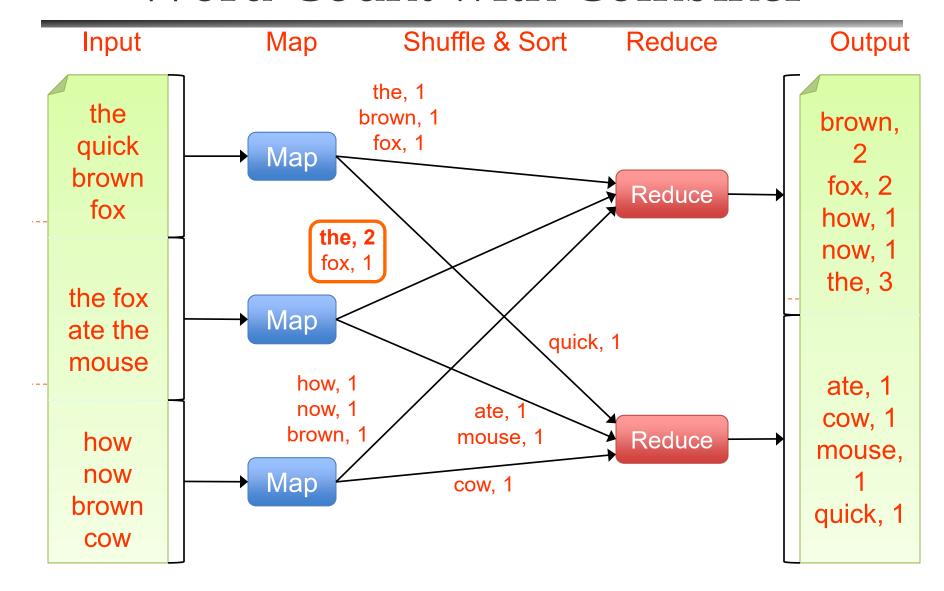
def reducer(key, values):
    output(key, sum(values))
```

An Optimization: The Combiner

- Local reduce function for repeated keys produced by same map
- For associative ops. like sum, count, max
- Decreases amount of intermediate data
- Example: local counting for Word Count:

```
def combiner(key, values):
   output(key, sum(values))
```

Word Count with Combiner



Example 2: distributed grep

- Grep reads a file line by line, and if a line matches a pattern (e.g., regular expression), it outputs the line
- Map function
 - read a file or set of files
 - emit a line if it matches the pattern
 - key = original file (or unique key if origin file does not matter)
 - (file_id, line_number)
- Reduce function
 - identity (use intermediate results as final results)
 - (file_id, list (line_number))

Example 3: URL access frequency

- Input: log of web page requests (after a query)
- Output: how many times each URL is accessed
 - Variant: what are the top-k most-accessed URLs?
- Map function
 - Parse the log, output a <URL, 1> pair for each access
- Reduce function
 - For each key URL, a list of *n* "1" is associated (i.e., added)
 - Emit a final pair <URL, n>

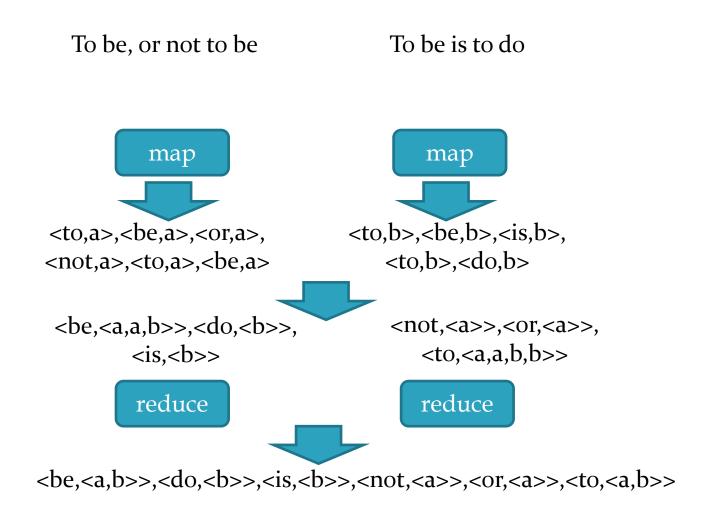
Example 4: Reverse Web-link graph

- Get all the links pointing to some page
 - This is the basis for the PageRank algorithm!
- Map function
 - output a <target, source > pair for each link to target URL in a page named source
- Reduce function
 - Concatenate the list of all source URLs associated with a given target URL and emits the pair:
 - <target, list(sources)>

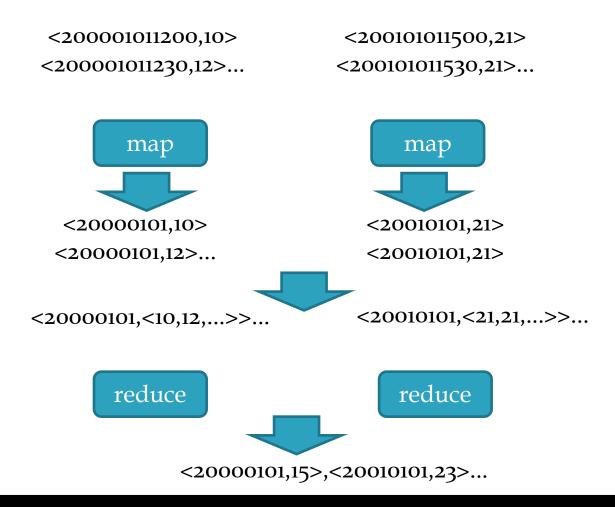
Example 5: Inverted index

- Get all documents containing some particular keyword
 - Used by the search mechanisms of Google, Yahoo!, etc.
 - Second input for PageRank
- Map function
 - Parse each document and emit a set of pairs <word, documentID>
- Reduce function
 - Take all pairs for a given word
 - Sort the document IDs
 - Emit a final <word,list(document IDs)> pair

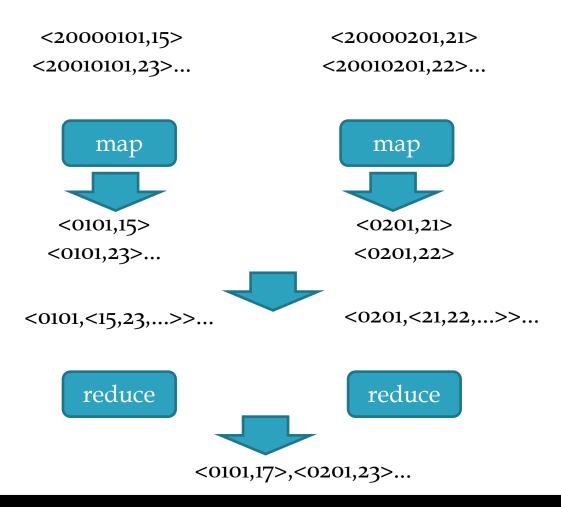
Example 5: Inverted index



Ex. 6: Avg. max temp per calendar day



Ex. 6: Avg. max temp per calendar day



Hadoop

- Hadoop is the most known open-source MapReduce implementation
 - Lots of contributions by Yahoo!, now an Apache foundation project
 - Written in Java
 - Uses the HDFS file system (amongst others)
 - Many extensions and optimizations over the original Google paper
- A MapReduce implementation of choice when using Amazon's cloud services
 - EC2: rent computing power and temporary space
 - S3: rent long term storage space

Use cases 1/3

The New York Times

- Large Scale Image Conversions
- 100 Amazon EC2 Instances, 4TB raw TIFF data
- 11 Million PDF in 24 hours and 240\$

Facebook

- Internal log processing
- Reporting, analytics and machine learning
- Cluster of 1110 machines, 8800 cores and 12PB raw storage
- Open source contributors (Hive)

facebook.

Twitter

- Store and process tweets, logs, etc
- Open source contributors (Hadoop-Izo)

Use cases 2/3

- 100.000 CPUs in 25.000 computers
- Content/Ads Optimization, Search index
- Machine learning (e.g. spam filtering)
- Open source contributors (Pig)

Microsoft

- Natural language search (through Powerset)
- 400 nodes in EC2, storage in S3
- Open source contributors (!) to HBase

Amazon

- ElasticMapReduce service
- On demand elastic Hadoop clusters for the Cloud

Use cases 3/3

- ETL processing, statistics generation
- Advanced algorithms for behavioral analysis and targeting

LinkedIn

- Used for discovering People you May Know, and for other apps
- 3x30 node cluster, 16GB RAM and 8TB storage

Baidu

- Leading Chinese language search engine
- Search log analysis, data mining
- 300TB per week
- 10 to 500 node clusters

Conclusion