Functional Programmin
- l 4 4

Slides taken from
http://turing.cs.pub.ro/fp 08

i Lecture No. 12

Analysis and Efficiency of Functional
Programs

= Reduction strategies and lazy evaluation

i 1. Reduction strategies and lazy evaluation

= Programming 1s not only about writing correct
programs but also about writing fast ones
that require little memory

= Aim: how functional programs are
commonly executed on a real computer= a
foundation for analyzing time and space usage

= Every implementationmore or less closely
follows the execution model of lazy
evaluation (oxvypn arnotiuncn).

i 1.1 Reduction

Executing a functional program, 1.¢.
evaluating an expression => means to
repeatedly apply function definitions until
all function applications have been expanded

= Implementations of modern Functional
Programming languages are based on a
simplification technique called reduction.

Evaluation in a strongly typed language

Expression

|

Syntax analysis

|

> Syntactic error

Type analysis

> Type error

Reduction

20 Hd>rCcrr><<m

> Evaluation error

s The evaluation of an expression passes through three stages

= Only those expression which are syntactically correct and
well typed are submitted for reduction

What 1s reduction?

= Givenasetofrules R, R,, ..., R (called reduction rules)
= and an expression

s Reduction 1s the process of repeatedly simplifying ¢ using
the given reduction rules

=¢e; Ry
=e, R,

— ek le) R1J€ {RI’ Rz, ooy RII}

until no rule 1s applicable

= e, 1s called the normal form of REdletiOH

s It s the simplest form of

i 2 types of reduction rules

s Built-in rules:
addition, substraction, multiplication, division

s User supplied rules:

square X =X7*X
double x =x+X
sum [] =0

sum (X:xs) =X + sum [x+1:xs]

fxy = square x + square y

i 1.2 Reduction at work

s Each reduction step replaces a subexpression by an
equivalent expression by applying one of the 2
types of rules

fxy = square X + square y

f34 = (square 3)+ (square 4) ()
= (3*3) + (square 4) (square)
= 9 + (square 4) (*)
= 9+ (4%4) (square)
=9+ 16 (*)

- 25 (+)

i Reduction rules

Every reduction replaces a subexpression, called reducible
expression or for short, with an equivalent one, either
by appealing to a function definition (like for square) or by
using a built-in function like (+).

m An expression without redexes is said to be in normal form.

= The fewer reductions that have to be performed, the faster
the program runs.

m We cannot expect each reduction step to take the same
amount of time because its implementation on real hardware
looks very different, but in terms of asymptotic complexity,
this number of reductions 1s an accurate measure.

Alternate reductions

]7ua/u. (3t 7')

jjua/u (?"*7')

L jeuane (10) (F)

/7uw (3++)

Aouare (3+F)
— (3+77)x(§+7) qua/i&)
fo «(3+7) (+)

- o xlo C+)
= foo (*’)
N————

Possible ways of evaluating square

Souenl (3*})

57%/} A
(3FF) v (3+7) Spuerc /OS i
Uu
N W)
/9\‘(’51»‘%) (24—})*/0 10 1o

+ NG
10 »f—l//lﬂ /o\ae (o \i
X’/ \:' oo

foo (0o

i Comments

There are usually several ways for reducing a given
expression to normal form

= Each way corresponds to a route in the evaluation tree: from
the root (original expression) to a leaf (reduced expression)

s There are three different ways for reducing square (3+7)
= Questions:

= Are all the answers obtained by following distinct routes
identical?
= Which is the best route?

= Can we find an algorithm which always follows the best
route?

i Q&A

= Q: Are all the values obtained by following
distinct routes identical?

= A: If two values are obtained by following two
different routes, then these values must be 1dentical

= Q: Which is the best route?

s Ideally, we are looking for the shortest route.
Because this will take the least number of reduction
steps and, therefore, 1s the most efficient.

i Q&A

= (Q: Can we find an algorithm which always
follows the best route?
= In any tree of possible evaluations, there are
usually two extremely interesting routes based
on:
= An Eager Evaluation Strategy (npoOvun amwotipnon)
= A Lazy Evaluation Strategy (Oxvnpn amotiuncn)

1.3 Eager evaluation

s (1ven an expression such as:
fa
where f1s a function and a 1s an argument.

s The Lazy Evaluation strategy reduces such an
expression by attempting to

s The Eager Evaluation Strategy reduces this
expression by

Example of Eager Evaluation

Jjuo/bt(%/'?’)

= puare (49) Py Rl
= ;//0*”0 /37‘/“0/"" Aeden
— Ao - /57 ¥)

Example of Lazy Evaluation

_ffua/vc (3"'7')
= (34':7")’*‘{3"'?') /])7 Jﬁum
= flow (3+7))59

= fox 1o

¥ + 1

(0o KZ
3

IO ol Amr ke

1.4 A&D of reduction strategies

s LAZY EVALUATION = Outer-most Reduction
Strategy

= Reduces outermost redexes = redexes that are
not inside another redex.

s EAGER EVALUATION = Inner-most Reduction
Strategy

= Reduces innermost redexes

= An innermost redex is a redex that has no other
redex as subexpression inside.

s Advantages and drawbacks

Repeated Reductions of Subexpressions

Jouart (5+F)
Fa"ﬁm eval / Za/); eval_
= /fuw {2 Z(3+%) % (3+7)
= fo¥ Ao = Aoy (3+7)
= oo = fox/2
= foo,

= Eager Evaluation is better because it did not repeat the
reduction of the subexpression (3+7)/

Repeated Reductions of Subexpressions

.f/vua/u. (e [1:100])

_ fouane 5050 loohimei —Jum (1. 100) x Jm:ar (4. l00)

-~ - Yy

= giofo * oy o /JruaM — Epce s fuw “”5’4”)

=55 92505 Y 100 femen 4
= 5050 ¥(oyo

{oo_fimes +
= 285702 500

=

= Eager Evaluation requires 102 reductions
= Lazy Evaluation requires 202 reductions

s The Eager Strategy did not repeat the reduction of the
subexpression sum [1..100])!

Performing Redundant Computations

" Lazy evaluation 1s better

= first (2+2, square 195) 22;;&2?; Ifserfonning redundant
s Lazy Evaluation

= 2+2 (first)

= 4 (+)

= Eager Evaluation
— first (4, square 15) (+)
— first(4, 15*15) (square)
= first(4, 225) (%)
— 4 (first)

Termination
For some expressions like 100p =1+ 100p

no reduction sequence may terminate; they do not have a

normal form.

But there are also expressions where some reduction

sequences terminate and some do not
first (5, 1/ 0)

Lazy Evaluation

— (first)
Eager Evaluation

= first(5, bottom) (/)

" Lazy evaluation is better
as 1t avoids infinite loops
In some cases

= bottom (Attempts to compute 1/0)

iEager evaluation (IIp6O@vun Amotipnon)

= Advantages:

= Repeated reductions of sub-expressions 1s
avoided.

= Drawbacks:

= Have to evaluate all the parameters 1n a function
call, whether or not they are required to produce
the final result.

= [t may not terminate.

* Lazy evaluation (Oxvup1n Arnotiunon)

= Advantages:

= A sub-expression 1s not reduced unless 1t 1s
absolutely essential for producing the final result.

= If there 1s any reduction order that terminates,
then Lazy Evaluation will terminate.

= Drawbacks:

= The reductions of some sub-expressions may be
unnecessarily repeated.

i Duplicated Reduction of Subexpressions

The reduction of the expression (3+4) 1s duplicated
when we attempt to use lazy evaluation to reduce

square (3+4)

This problem arises for any definition where a
variable on the left-hand side appears more than
once on the right-hand side.

square X = X * X
cube X=X *x*x

* 1.5 Graph Reduction

Aim: Keep All good features of Lazy

Eval

dup!

Met]

uation and at the same time avoiding

1cated reductions of sub-expressions.

nod: By representing expressions as

graphs so that all occurrences of a variable
(graph nodes) are pointing to the same value
(graph node).

Graph Reduction

57MN.“+Z) L.xl I

(1+2)
= leuoar
> L l 44—1) 7 qum (4+Z,)L
. | + = (l+2)x-(4+l) (Jo)
> L ¥_l é = 3-):-(44-2) (_f)
- 9 ; 5¥5 (+)
Outermt er//L eoluch py (>)

Graph Reduction Strategy combines all the benefits of

both Eager and Lazy evaluations with none of
their drawbacks.

i Graph Reduction

The outermost graph reduction of
square (3 + 4)
now reduces every argument at most once.

For this reason, 1t always takes fewer
reduction steps than the innermost reduction

Sharing of expressions 1s also introduced
with let and where constructs.

Graph Reduction for let

Heron's formula for the area of a triangle with sides a, b and c:

ahea. a b e = bt S=(a+b+c)/2 in
54/-;1: (S*(S'a\)*(S-L)%(S-c\)

awe A 1 A

- 57/_'[(1 *(“ _ a) *(5 -L);(J-—c)) ((44—%—# 1)/2)
() (+) (»

—) ‘{TI (J*QA—CL)*(l’B)*(l’c) ;.Lb’

— 0433011 YL (V3 /)

= Let-bindings simply give names to nodes in the graph

i Graph Reduction

Any implementation of Haskell 1s in some form
based on which thus
provides a good model for reasoning about the
asymptotic complexity of time and memory
allocation

The number of reduction steps to reach normal form
corresponds to the execution time and the size of the
terms 1n the graph corresponds to the memory used.

i Reduction of higher order functions and currying

Id X =X

a =id (+1) 41
twicef =f.f

b = twice (+1) (13*3)

where both id and twice are only defined with
one argument.

The solution 1s to see multiple arguments as
subsequent applications to one argument —
currying (01000yIKES EPUPUOYES GE £VO. OPLGND.)

i Reduction of higher order functions and currying

. id X =X
= Currying a = id (+1) 41
twicef =f.f
b = twice (+1) (13*3)

a = (id (+1)) 41
b = (twice (+1)) (13*3)

s To reduce an arbitrary application expressionl
expressionZ, call-by-need first reduce expressionl
until this becomes a function whose definition can

be unfolded with the argument expressionZ.

i Reduction of higher order functions and currying

a = (id (+1)) 41

a
~ (id (+1)) 41 (a)
~ (+1) 41 (id)

= 42 (+)

i Reduction of higher order functions and currying

b = (twice (+1)) (13*3)

b
= (twice (+1)) (13*3) (b)
= ((+1).(+1)) (13*3) (twice)
= (+1) (+1) (1373)) (-)
= (+1) (+1) 39) (%)
= (+1) 40 (+)
= 41 (+)

i Reduction of higher order functions and currying

Functions are useful as data structures.

In fact, all data structures are represented as
functions 1n the pure lambda calculus, the
root of all functional programming
languages.

i EITANAAHYH

LAZY: fa(mfepopuoleton Tpmra...)
EAGER: f a (1o a amotiudatol Tpowra...)
Outer-Most Graph-Reduction: LAZY + EAGER

H f epapuoletar mpoto: X1V EKQpacn ToV
operations Tov TPOKVTTEL, KAmTolo, operands
OVTIOTOLYOVV GE KOUPoug ypdpov

[ToAlol KOUPO1 Olyvouy oTnV 1010 EKEPOCT) TTOL
amToTIUATOL Hiot eopd Kol amodnkeveTan o€ shared
memory cell. 'Etol anopevyovtot o1 emavainyelc g
LAZY teyviknc...

;epeated Reductions of Subexpressions

J/vua/u. (e [1:100])

= fouorr 4p50 400"1'0‘40-)— =Jum (l..loo) s Jeem [’A.. /00)
- Jouare
< (oo ApuaMt vi
- Z,o,fozﬂo)a fu = 5050 » Auw (A .As0)
,.23.5 H2505 ¥Y— IOOL"”M .
= 5050 ¥(oJo
Eager: 102 T
= 2§50 505
- >

Lol

Sum[1..100] Lazy: 202

Outer-Most Graph-
Reduction: 101

	Slide 1: Functional Programming
	Slide 2: Lecture No. 12
	Slide 3: 1. Reduction strategies and lazy evaluation
	Slide 4: 1.1 Reduction
	Slide 5
	Slide 6: What is reduction?
	Slide 7: 2 types of reduction rules
	Slide 8: 1.2 Reduction at work
	Slide 9: Reduction rules
	Slide 10: Alternate reductions
	Slide 11: Possible ways of evaluating square
	Slide 12: Comments
	Slide 13: Q&A
	Slide 14: Q&A
	Slide 15: 1.3 Eager evaluation
	Slide 16: Example of Eager Evaluation
	Slide 17: Example of Lazy Evaluation
	Slide 18: 1.4 A&D of reduction strategies
	Slide 19: Repeated Reductions of Subexpressions
	Slide 20: Repeated Reductions of Subexpressions
	Slide 21: Performing Redundant Computations
	Slide 22: Termination
	Slide 23: Eager evaluation (Πρόθυμη Αποτίμηση)
	Slide 24: Lazy evaluation (Οκνυρή Αποτίμηση)
	Slide 25: Duplicated Reduction of Subexpressions
	Slide 26: 1.5 Graph Reduction
	Slide 27: Graph Reduction
	Slide 28: Graph Reduction
	Slide 29: Graph Reduction for let
	Slide 30: Graph Reduction
	Slide 31: Reduction of higher order functions and currying
	Slide 32: Reduction of higher order functions and currying
	Slide 33: Reduction of higher order functions and currying
	Slide 34: Reduction of higher order functions and currying
	Slide 35: Reduction of higher order functions and currying
	Slide 36: ΕΠΑΝΑΛΗΨΗ
	Slide 37: Repeated Reductions of Subexpressions

