The Probabilistic Method - Probabilistic Techniques

Lecture 8: "Martingales"

Sotiris Nikoletseas Professor

Computer Engineering and Informatics Department 2017 - 2018

- 1. The Janson Inequality
- 2. Example Triangle-free sparse Random Graphs
- 3. Example Paths of length 3 in $G_{n,p}$

Summary of this lecture

- 1) Probability theory preliminaries
- 2) Martingales
- 3) Example
- 4) Doob martingales
- 5) Edge exposure martingale
- 6) Edge exposure martingale Example
- 7) Vertex exposure martingale
- 8) Azuma's inequality
- 9) Lipschitz condition
- 10) Example Chromatic number
- 11) Example Balls and bins

If X and Y are discrete random variables then: 1. Joint probability mass function:

$$f(x,y) = \Pr\{X = x \,\cap\, Y = y\}$$

2. Conditional Probability:

$$\Pr\{X = x | Y = y\} = \frac{f(x, y)}{\Pr\{Y = y\}} = \frac{f(x, y)}{\sum_{x} f(x, y)}$$

3. Conditional Expectation:

$$E[X|Y=y] = \sum_{x} x \cdot \Pr\{X=x|Y=y\} = \sum_{x} x \cdot \frac{f(x,y)}{\sum_{x} f(x,y)}$$

Remark: E[X|Y = y] = f(y) is actually a random variable. (depends on the value of Y)

Probability theory

Lemma 1

$$E\big[E[X|Y]\big]=E[X]$$

Proof: It is:

$$f(y) = E[X|Y = y] = \sum_{x} x \cdot \frac{f(x,y)}{\Pr\{Y = y\}}$$

Proof of Lemma 1

$$\Rightarrow E[E[X|Y]] = E[f(Y)] = \sum_{y} f(y) \operatorname{Pr}\{Y = y\}$$
$$= \sum_{y} \left(\sum_{x} x \cdot \frac{f(x,y)}{\operatorname{Pr}\{Y = y\}} \right) \operatorname{Pr}\{Y = y\}$$
$$= \sum_{y} \left(\sum_{x} x \cdot f(x,y) \right)$$
$$= \sum_{x} x \cdot \left(\sum_{y} f(x,y) \right)$$
$$= \sum_{x} x \cdot \operatorname{Pr}\{X = x\}$$
$$= E[X]$$

- 1 If X, Y independent $\Rightarrow E[X|Y] = E[X]$
- 2 $E[X_1 + X_2|Y] = E[X_1|Y] + E[X_2|Y]$ (linearity)
- $X_1 \le X_2 \Rightarrow E[X_1|Y] \le E[X_2|Y] \text{ (monotonicity)}$
- 4 For random variables, V, U, W it is

 $E\left[\left. E[V|U,W] \right. \right| W \left. \right] = E[V|W]$

Definition 1

A sequence of r.v. X_0, X_1, \ldots is a martingale w.r.t. the sequence Y_0, Y_1, \ldots if for all $i \ge 0$:

 $E[X_i|Y_0, Y_1, \dots, Y_{i-1}] = X_{i-1}$

Definition 2

A martingale is a sequence X_0, X_1, \ldots of random variables so that

$$\forall i: E[X_i|X_0, \dots, X_{i-1}] = X_{i-1}$$

(i.e. it is a martingale w.r.t. itself).

Example

- Consider a bin that initially contains b black balls and w white balls.
- We iteratively choose at random a ball from the bin and replace it with *c* balls of the same color.
- Define random variable X_i which refers to the percentage of black balls after i^{th} iteration.
- The sequence X_0, X_1, \ldots is a martingale.

Proof:

Let as denote that after the i-1 iteration there are b_{i-1} black and w_{i-1} white balls in the bin. Thus,

$$X_{i-1} = \frac{b_{i-1}}{b_{i-1} + w_{i-1}}$$

After the i^{th} iteration:

case 1: The probability of choosing a black ball is

$$X_{i-1} = \frac{b_{i-1}}{b_{i-1} + w_{i-1}}$$

If we choose it and replace it with c black balls the bin will contain:

- $b_{i-1} + c 1$ black balls and
- w_{i-1} white balls

Thus,

$$X_i = \frac{b_{i-1} + c - 1}{b_{i-1} + w_{i-1} + c - 1}$$

case 2: The probability of choosing a white ball is

$$1 - X_{i-1} = \frac{w_{i-1}}{b_{i-1} + w_{i-1}}$$

If we choose it and replace it with c white balls the bin will contain :

- b_{i-1} black balls and
- $w_{i-1} + c 1$ white balls

Thus,

$$X_i = \frac{b_{i-1}}{b_{i-1} + w_{i-1} + c - 1}$$

Proof of Example

$$E[X_i|X_0, \dots, X_{i-1}] =$$

$$= \frac{b_{i-1}}{b_{i-1} + w_{i-1}} \cdot \frac{b_{i-1} + c - 1}{b_{i-1} + w_{i-1} + c - 1} + \frac{w_{i-1}}{b_{i-1} + w_{i-1}} \cdot \frac{b_{i-1}}{b_{i-1} + w_{i-1} + c - 1}$$

$$= \frac{b_{i-1} \cdot (b_{i-1} + c - 1) + w_{i-1}b_{i-1}}{(b_{i-1} + w_{i-1}) \cdot (b_{i-1} + w_{i-1} + c - 1)}$$

$$= \frac{b_{i-1} \cdot (b_{i-1} + c - 1 + w_{i-1})}{(b_{i-1} + w_{i-1}) \cdot (b_{i-1} + w_{i-1} + c - 1)}$$

$$= \frac{b_{i-1}}{b_{i-1} + w_{i-1}}$$

$$= X_{i-1}$$

Another Example

- A series of fair games (in each game the win probability is 1/2)
- Game 1: bet₁ = 1 \$
 Game i > 1: { bet_i = 2ⁱ \$ if won in round i 1 bet_i = i \$ otherwise
 X_i = amount won in the i-th game (if i-th game lost then X_i negative (< 0)).
 Z_i = total winnings at end of i-th game.
- Clearly, Z_i is martingale w.r.t. X_i since:

$$E[X_i] = \frac{1}{2} \cdot bet_i + \frac{1}{2}(-bet_i) = 0$$
$$Z_i = \sum_i X_i \Rightarrow E[Z_i] = \sum_i E[X_i] = 0$$
and $E[Z_i|X_1, X_2 \dots, X_{i-1}] = Z_{i-1} + E[X_i] = Z_{i-1}$

Lemma 2

If a sequence X_0, X_1, \ldots is a martingale then,

$$\forall i: \ E[X_i] = E[X_0]$$

Proof: Since X_i is a martingale, by the definition we have that:

$$\forall i : E[X_i | X_0, \dots, X_{i-1}] = X_{i-1} \Rightarrow$$
$$E\left[E[X_i | X_0, \dots, X_{i-1}]\right] = E\left[X_{i-1}\right] \Rightarrow$$
$$E[X_i] = E[X_{i-1}] \Rightarrow \text{ (inductively)}$$
$$E[X_i] = E[X_0], \ \forall i$$

Properties of martingales

- It is possible to construct a martingale from **any** random variable.
 - \blacksquare random variable \leftrightarrow graph-theoretic function in random graph
 - ⇒ we can construct a martingale for any graph-theoretic function.
- The martingale is constructed using a generic way, as follows.

Let Z_0, Z_1, \ldots, Z_n and let Y a function of the Z_i r.v. Let

$$X_i = E[Y|Z_0, Z_1, \dots, Z_i], \quad i = 0, 1, \dots, n$$

Then, X_0, X_1, \ldots, X_n is a martingale w.r.t. Z_0, Z_1, \ldots, Z_n , which is called a Doob martingale. (Often $X_0 = E[Y]$)

Proof

$$\forall i: \ X_i = E[Y|Z_0, Z_1, \dots, Z_i] \Rightarrow \Rightarrow E[X_i|Z_0, Z_1, \dots, Z_{i-1}] = = E\left[E[Y|Z_0, Z_1, \dots, Z_i] | Z_0, Z_1, \dots, Z_{i-1}\right] = = E[Y|Z_0, Z_1, \dots, Z_{i-1}] = X_{i-1}$$

 \square

Definition 3

Let G be random graph from $G_{n,p}$ and f(G) be any graph theoretic function. Arbitrarily label the $m = \binom{n}{2}$ possible edges with the sequence $1, \ldots, m$. For $1 \leq j \leq m$, define the indicator random variable

$$I_j = \begin{cases} 1 & e_j \in G \\ 0 & otherwise \end{cases}$$

The (Doob) edge exposure martingale is defined to be the sequence of random variables X_0, \ldots, X_m such that

$$X_k = E[f(G)|I_1, \dots, I_k]$$

while $X_0 = E[f(G)]$ and $X_m = f(G)$.

The Edge Exposure Martingale - Example

Figure: Edge exposure martingale

 $G_{n,1/2}$

$$\blacksquare m = n = 3$$

- f = chromatic number
- The edges are exposed in the order "bottom, left, right".

The values X_k are given by tracing from the central node to leaf node.

The Edge Exposure Martingale - Example

Remarks:

- $\exists 2^3$ graphs (sample points), every one with probability $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$
- at time *i* there are *i* edges exposed (i = 0, 1, 2, 3)
- when i = 3 all edges are exposed and thus X_3 is the function f.
- when i = 0 no edge is exposed and thus $X_0 = E[f(G)]$ is constant.

$$X_0 = \frac{1}{8} \cdot (3 + 2 + 2 + 2 + 2 + 2 + 2 + 1) = \frac{1}{8} \cdot 16 = 2$$

$$\forall i: X_i = E[X_{i+1}|X_0, \dots, X_i] \text{ since:} \\ X_2 = 2.5 = \frac{1}{2} \cdot 3 + \frac{1}{2} \cdot 2 = E[X_3|I_0, I_1, I_2] \\ X_2 = 2 = \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 2 = E[X_3|I_0, I_1, I_2] \\ X_2 = 2 = \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 2 = E[X_3|I_0, I_1, I_2] \\ X_2 = 1.5 = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 2 = E[X_3|I_0, I_1, I_2] \\ X_1 = 2.25 = \frac{1}{2} \cdot 2.5 + \frac{1}{2} \cdot 2 = E[X_2|I_0, I_1] \\ X_1 = 1.75 = \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 1.5 = E[X_2|I_0, I_1] \\ X_0 = 2 = \frac{1}{2} \cdot 2.25 + \frac{1}{2} \cdot 1.75 = E[X_1|I_0] \\ \end{cases}$$

 \Rightarrow X_i is a martingale.

Definition 4

Let G be random graph from $G_{n,p}$ and f(G) be any graph theoretic function. Arbitrarily label the $m = \binom{n}{2}$ possible edges with the sequence $1, \ldots, m$. Define the set E_i $1 \le i \le n$ as the set of all possible edges with vertices in $\{1, \ldots, i\}$. Also, $\forall j \in E_i$, define the indicator random variable

$$I_j = \begin{cases} 1 & e_j \in G \\ 0 & otherwise \end{cases}$$

Also, define the vector $\hat{I}_i = [I_1, \ldots, I_j, \ldots], \quad \forall j \in E_i$. The (Doob) vertex exposure martingale is defined to be the sequence of random variables Y_0, \ldots, Y_n such that

$$Y_k = E[f(G)|\hat{I}_1, \dots, \hat{I}_k]$$

while $Y_0 = E[f(G)]$ and $Y_n = f(G)$.

Azuma's inequality

Definition 5

Let $X_0 = 0, X_1, \ldots X_m$ be a martingale with

$$|X_{i+1} - X_i| \le 1$$

for all $0 \leq i < m$. Let $\lambda > 0$ be arbitrary. Then

$$\Pr\{X_m > \lambda \sqrt{m}\} < e^{-\lambda^2/2}$$

Generalization: If $X_0 = c$ then

$$\Pr\{|X_m - c| > \lambda\sqrt{m}\} < 2e^{-\lambda^2/2}$$

• Let
$$f(G)$$
 be a graph-theoretic function.
• Consider a Doob exposure martingale with
• $X_0 = c = E[f(G)]$ and
• X_m or $Y_n = f(G)$
If $|X_{i+1} - X_i| \le 1$ then
 $\Pr\left\{ \left| f(G) - E[f(G)] \right| > \lambda \sqrt{m} \right\} < 2e^{-\lambda^2/2}$

Lipschitz condition

Definition 6

A graph-theoretic function f(G) satisfies the edge (respectively vertex) Lipschitz condition iff $\forall G, G'$ that differ only in one edge (respectively vertex) it is:

$$\left| f(G) - f(G') \right| \le 1$$

Theorem 1

If a graph-theoretic function f satisfies the edge (vertex) Lipschitz condition then the corresponding edge (vertex) exposure martingale X_i satisfies

$$|X_{i+1} - X_i| \le 1$$

Definition 7

The Chromatic number $\chi(G)$ is the least number of colors required to color the vertices of a graph so that any adjacent vertices do not have the same color.

Theorem 2

Let G be a graph in $G_{n,p}$ then

$$\forall \lambda > 0: \quad \Pr\left\{ \left| \chi(G) - E[\chi(G)] \right| > \lambda \sqrt{n} \right\} < 2e^{-\lambda^2/2}$$

Proof of theorem 2

- Consider the Doob vertex exposure martingale $X_0, X_1...$ that corresponds to graph-theoretic function $f(G) = \chi(G)$.
- We observe that the Doob vertex exposure martingale satisfies the Lipschitz condition since the exposure of a new vertex may increase the current chromatic number $\chi(G)$ at most by 1.
- Applying theorem 1 it holds that $|X_{i+1} X_i| \le 1$.
- We now apply the generalized Azuma inequality with $c = X_0 = E[\chi(G)]$ and have

$$\forall \lambda > 0: \quad \Pr\left\{ \left| \chi(G) - E[\chi(G)] \right| > \lambda \sqrt{n} \right\} < 2e^{-\lambda^2/2}$$

since $X_n = \chi(G)$

Suppose there are n balls and n bins. We are randomly throwing each ball into a bin. Define the function L(n) that corresponds to the number of empty bins. Prove that

$$orall \lambda > 0: \quad \Pr\left\{ \left| L(n) - rac{n}{e} \right| > \lambda \sqrt{n}
ight\} < 2e^{-\lambda^2/2}$$

Proof:

We define the indicator variable

$$l_i = \begin{cases} 1 & i^{th} \text{bin is empty} \\ 0 & \text{otherwise} \end{cases}$$

Thus, $L(n) = \sum_{i=1}^{n} l_i$ is the number of empty bins. $E[l_i] = 1 \cdot \Pr\{l_i = 1\} + 0 \cdot \Pr\{l_i = 0\} = (1 - \frac{1}{n})^n \sim \frac{1}{n}$

by L.O.E.
$$E[L(n)] = E\left[\sum_{i=1}^{n} l_i\right] = \sum_{i=1}^{n} E[l_i] \sim n \cdot \frac{1}{e}$$

Example Balls and Bins

- Consider the Doob vertex exposure martingale $X_0, X_1 \dots$ that corresponds to the function L(n) (vertices correspond to balls).
- We observe that Doob vertex exposure martingale satisfies the Lipschitz condition since the exposure of a new vertex (i.e. the throwing a new ball in a bin) may decrease the current number of empty bins L(n) at most by 1.
- Applying theorem 1 it holds that $|X_{i+1} X_i| \le 1$.
- We now apply generalized Azuma inequality with $c = X_0 = E[L(n)]$ and have

$$\forall \lambda > 0: \quad \Pr\left\{ \left| L(n) - \frac{n}{e} \right| > \lambda \sqrt{n} \right\} < 2e^{-\lambda^2/2}$$

since $X_n = L(n)$ and $E[L(n)] \sim \frac{n}{e}$.