The Probabilistic Method - Probabilistic Techniques

Lecture 8: "Martingales"

Sotiris Nikoletseas Professor

Computer Engineering and Informatics Department

$$
2017-2018
$$

Summary of previous lecture

1. The Janson Inequality
2. Example - Triangle-free sparse Random Graphs
3. Example - Paths of length 3 in $G_{n, p}$

Summary of this lecture

1) Probability theory preliminaries
2) Martingales
3) Example
4) Doob martingales
5) Edge exposure martingale
6) Edge exposure martingale - Example
7) Vertex exposure martingale
8) Azuma's inequality
9) Lipschitz condition
10) Example - Chromatic number
11) Example - Balls and bins

Probability theory preliminaries

If X and Y are discrete random variables then:

1. Joint probability mass function:

$$
f(x, y)=\operatorname{Pr}\{X=x \cap Y=y\}
$$

2. Conditional Probability:

$$
\operatorname{Pr}\{X=x \mid Y=y\}=\frac{f(x, y)}{\operatorname{Pr}\{Y=y\}}=\frac{f(x, y)}{\sum_{x} f(x, y)}
$$

3. Conditional Expectation:

$$
E[X \mid Y=y]=\sum_{x} x \cdot \operatorname{Pr}\{X=x \mid Y=y\}=\sum_{x} x \cdot \frac{f(x, y)}{\sum_{x} f(x, y)}
$$

Remark: $E[X \mid Y=y]=f(y)$ is actually a random variable. (depends on the value of Y)

Probability theory

Lemma 1

$$
E[E[X \mid Y]]=E[X]
$$

Proof:
It is:

$$
f(y)=E[X \mid Y=y]=\sum_{x} x \cdot \frac{f(x, y)}{\operatorname{Pr}\{Y=y\}}
$$

Proof of Lemma 1

$$
\begin{aligned}
\Rightarrow E[E[X \mid Y]] & =E[f(Y)]=\sum_{y} f(y) \operatorname{Pr}\{Y=y\} \\
& =\sum_{y}\left(\sum_{x} x \cdot \frac{f(x, y)}{\operatorname{Pr}\{Y=y\}}\right) \operatorname{Pr}\{Y=y\} \\
& =\sum_{y}\left(\sum_{x} x \cdot f(x, y)\right) \\
& =\sum_{x} x \cdot\left(\sum_{y} f(x, y)\right) \\
& =\sum_{x} x \cdot \operatorname{Pr}\{X=x\} \\
& =E[X]
\end{aligned}
$$

Other useful properties

1 If X, Y independent $\Rightarrow E[X \mid Y]=E[X]$
$2 E\left[X_{1}+X_{2} \mid Y\right]=E\left[X_{1} \mid Y\right]+E\left[X_{2} \mid Y\right]$ (linearity)
$3 X_{1} \leq X_{2} \Rightarrow E\left[X_{1} \mid Y\right] \leq E\left[X_{2} \mid Y\right]$ (monotonicity)
4 For random variables, V, U, W it is

$$
E[E[V \mid U, W] \mid W]=E[V \mid W]
$$

Martingales

Definition 1

A sequence of r.v. X_{0}, X_{1}, \ldots is a martingale w.r.t. the sequence Y_{0}, Y_{1}, \ldots if for all $i \geq 0$:

$$
E\left[X_{i} \mid Y_{0}, Y_{1}, \ldots, Y_{i-1}\right]=X_{i-1}
$$

Definition 2

A martingale is a sequence X_{0}, X_{1}, \ldots of random variables so that

$$
\forall i: \quad E\left[X_{i} \mid X_{0}, \ldots, X_{i-1}\right]=X_{i-1}
$$

(i.e. it is a martingale w.r.t. itself).

Example

- Consider a bin that initially contains b black balls and w white balls.
- We iteratively choose at random a ball from the bin and replace it with c balls of the same color.
- Define random variable X_{i} which refers to the percentage of black balls after $i^{t h}$ iteration.
- The sequence X_{0}, X_{1}, \ldots is a martingale.

Proof:

Let as denote that after the $i-1$ iteration there are b_{i-1} black and w_{i-1} white balls in the bin. Thus,

$$
X_{i-1}=\frac{b_{i-1}}{b_{i-1}+w_{i-1}}
$$

Proof of Example

After the $i^{t h}$ iteration:

- case 1: The probability of choosing a black ball is

$$
X_{i-1}=\frac{b_{i-1}}{b_{i-1}+w_{i-1}}
$$

If we choose it and replace it with c black balls the bin will contain:

- $b_{i-1}+c-1$ black balls and
- w_{i-1} white balls

Thus,

$$
X_{i}=\frac{b_{i-1}+c-1}{b_{i-1}+w_{i-1}+c-1}
$$

Proof of Example

- case 2: The probability of choosing a white ball is

$$
1-X_{i-1}=\frac{w_{i-1}}{b_{i-1}+w_{i-1}}
$$

If we choose it and replace it with c white balls the bin will contain :

- b_{i-1} black balls and
- $w_{i-1}+c-1$ white balls

Thus,

$$
X_{i}=\frac{b_{i-1}}{b_{i-1}+w_{i-1}+c-1}
$$

Proof of Example

$$
\begin{gathered}
E\left[X_{i} \mid X_{0}, \ldots, X_{i-1}\right]= \\
=\frac{b_{i-1}}{b_{i-1}+w_{i-1}} \cdot \frac{b_{i-1}+c-1}{b_{i-1}+w_{i-1}+c-1}+\frac{w_{i-1}}{b_{i-1}+w_{i-1}} \cdot \frac{b_{i-1}}{b_{i-1}+w_{i-1}+c-1} \\
=\frac{b_{i-1} \cdot\left(b_{i-1}+c-1\right)+w_{i-1} b_{i-1}}{\left(b_{i-1}+w_{i-1}\right) \cdot\left(b_{i-1}+w_{i-1}+c-1\right)} \\
=\frac{b_{i-1} \cdot\left(b_{i-1}+c-1+w_{i-1}\right)}{\left(b_{i-1}+w_{i-1}\right) \cdot\left(b_{i-1}+w_{i-1}+c-1\right)} \\
=\frac{b_{i-1}}{b_{i-1}+w_{i-1}} \\
=X_{i-1}
\end{gathered}
$$

Another Example

- A series of fair games (in each game the win probability is 1/2)
- Game 1: bet $_{1}=1 \$$
- Game $i>1: \begin{cases}b e t_{i}=2^{i} \$ & \text { if won in round } i-1 \\ b e t_{i}=i \$ & \text { otherwise }\end{cases}$
- $X_{i}=$ amount won in the i -th game
(if i-th game lost then X_{i} negative (<0)).
■ $Z_{i}=$ total winnings at end of i-th game.
- Clearly, Z_{i} is martingale w.r.t. X_{i} since:

$$
\begin{gathered}
E\left[X_{i}\right]=\frac{1}{2} \cdot b e t_{i}+\frac{1}{2}\left(-b e t_{i}\right)=0 \\
Z_{i}=\sum_{i} X_{i} \Rightarrow E\left[Z_{i}\right]=\sum_{i} E\left[X_{i}\right]=0 \\
\text { and } E\left[Z_{i} \mid X_{1}, X_{2} \ldots, X_{i-1}\right]=Z_{i-1}+E\left[X_{i}\right]=Z_{i-1}
\end{gathered}
$$

Lemma 2

If a sequence X_{0}, X_{1}, \ldots is a martingale then,

$$
\forall i: \quad E\left[X_{i}\right]=E\left[X_{0}\right]
$$

Proof:
Since X_{i} is a martingale, by the definition we have that:

$$
\begin{aligned}
\forall i: & E\left[X_{i} \mid X_{0}, \ldots, X_{i-1}\right]=X_{i-1} \Rightarrow \\
& E\left[E\left[X_{i} \mid X_{0}, \ldots, X_{i-1}\right]\right]=E\left[X_{i-1}\right] \Rightarrow \\
& E\left[X_{i}\right]=E\left[X_{i-1}\right] \Rightarrow \text { (inductively) } \\
& E\left[X_{i}\right]=E\left[X_{0}\right], \forall i
\end{aligned}
$$

Properties of martingales

- It is possible to construct a martingale from any random variable.
- random variable \leftrightarrow graph-theoretic function in random graph
\Rightarrow we can construct a martingale for any graph-theoretic function.
- The martingale is constructed using a generic way, as follows.

Doob Martingale

Let $Z_{0}, Z_{1}, \ldots, Z_{n}$ and let Y a function of the Z_{i} r.v.
Let

$$
X_{i}=E\left[Y \mid Z_{0}, Z_{1}, \ldots, Z_{i}\right], \quad i=0,1, \ldots, n
$$

Then, $X_{0}, X_{1}, \ldots, X_{n}$ is a martingale w.r.t. $Z_{0}, Z_{1}, \ldots, Z_{n}$, which is called a Doob martingale.
(Often $X_{0}=E[Y]$)

Proof

$$
\begin{aligned}
\forall i: & X_{i}=E\left[Y \mid Z_{0}, Z_{1}, \ldots, Z_{i}\right] \Rightarrow \\
& \Rightarrow E\left[X_{i} \mid Z_{0}, Z_{1}, \ldots, Z_{i-1}\right]= \\
& =E\left[E\left[Y \mid Z_{0}, Z_{1}, \ldots, Z_{i}\right] \mid Z_{0}, Z_{1}, \ldots, Z_{i-1}\right]= \\
& =E\left[Y \mid Z_{0}, Z_{1}, \ldots, Z_{i-1}\right] \\
& =X_{i-1}
\end{aligned}
$$

The Edge Exposure Martingale

Definition 3

Let G be random graph from $G_{n, p}$ and $f(G)$ be any graph theoretic function. Arbitrarily label the $m=\binom{n}{2}$ possible edges with the sequence $1, \ldots, m$. For $1 \leq j \leq m$, define the indicator random variable

$$
I_{j}= \begin{cases}1 & e_{j} \in G \\ 0 & \text { otherwise }\end{cases}
$$

The (Doob) edge exposure martingale is defined to be the sequence of random variables X_{0}, \ldots, X_{m} such that

$$
X_{k}=E\left[f(G) \mid I_{1}, \ldots, I_{k}\right]
$$

while $X_{0}=E[f(G)]$ and $X_{m}=f(G)$.

The Edge Exposure Martingale - Example

Figure: Edge exposure martingale

- $G_{n, 1 / 2}$
- $m=n=3$

■ $\mathrm{f}=$ chromatic number

- The edges are exposed in the order "bottom, left, right".

The values X_{k} are given by tracing from the central node to leaf node.

The Edge Exposure Martingale - Example

Remarks:

- $\exists 2^{3}$ graphs (sample points), every one with probability $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8}$
- at time i there are i edges exposed $(i=0,1,2,3)$
- when $i=3$ all edges are exposed and thus X_{3} is the function f .

■ when $i=0$ no edge is exposed and thus $X_{0}=E[f(G)]$ is constant.

$$
X_{0}=\frac{1}{8} \cdot(3+2+2+2+2+2+2+1)=\frac{1}{8} \cdot 16=2
$$

- $\forall i: X_{i}=E\left[X_{i+1} \mid X_{0}, \ldots, X_{i}\right]$ since:

■ $X_{2}=2.5=\frac{1}{2} \cdot 3+\frac{1}{2} \cdot 2=E\left[X_{3} \mid I_{0}, I_{1}, I_{2}\right]$
■ $X_{2}=2=\frac{1}{2} \cdot 2+\frac{1}{2} \cdot 2=E\left[X_{3} \mid I_{0}, I_{1}, I_{2}\right]$
■ $X_{2}=2=\frac{1}{2} \cdot 2+\frac{1}{2} \cdot 2=E\left[X_{3} \mid I_{0}, I_{1}, I_{2}\right]$
■ $X_{2}=1.5=\frac{1}{2} \cdot 1+\frac{1}{2} \cdot 2=E\left[X_{3} \mid I_{0}, I_{1}, I_{2}\right]$

- $X_{1}=2.25=\frac{1}{2} \cdot 2.5+\frac{1}{2} \cdot 2=E\left[X_{2} \mid I_{0}, I_{1}\right]$

■ $X_{1}=1.75=\frac{1}{2} \cdot 2+\frac{1}{2} \cdot 1.5=E\left[X_{2} \mid I_{0}, I_{1}\right]$
■ $X_{0}=2=\frac{1}{2} \cdot 2.25+\frac{1}{2} \cdot 1.75=E\left[X_{1} \mid I_{0}\right]$
$\Rightarrow \quad X_{i}$ is a martingale.

The Vertex Exposure Martingale

Definition 4

Let G be random graph from $G_{n, p}$ and $f(G)$ be any graph theoretic function. Arbitrarily label the $m=\binom{n}{2}$ possible edges with the sequence $1, \ldots, m$. Define the set $E_{i} \quad 1 \leq i \leq n$ as the set of all possible edges with vertices in $\{1, \ldots, i\}$. Also, $\forall j \in E_{i}$, define the indicator random variable

$$
I_{j}= \begin{cases}1 & e_{j} \in G \\ 0 & \text { otherwise }\end{cases}
$$

Also, define the vector $\hat{I}_{i}=\left[I_{1}, \ldots, I_{j}, \ldots\right], \forall j \in E_{i}$.
The (Doob) vertex exposure martingale is defined to be the sequence of random variables Y_{0}, \ldots, Y_{n} such that

$$
Y_{k}=E\left[f(G) \mid \hat{I}_{1}, \ldots, \hat{I_{k}}\right]
$$

while $Y_{0}=E[f(G)]$ and $Y_{n}=f(G)$.

Azuma's inequality

Definition 5

Let $X_{0}=0, X_{1}, \ldots X_{m}$ be a martingale with

$$
\left|X_{i+1}-X_{i}\right| \leq 1
$$

for all $0 \leq i<m$. Let $\lambda>0$ be arbitrary. Then

$$
\operatorname{Pr}\left\{X_{m}>\lambda \sqrt{m}\right\}<e^{-\lambda^{2} / 2}
$$

Generalization:

If $X_{0}=c$ then

$$
\operatorname{Pr}\left\{\left|X_{m}-c\right|>\lambda \sqrt{m}\right\}<2 e^{-\lambda^{2} / 2}
$$

Azuma's inequality importance

■ Let $f(G)$ be a graph-theoretic function.
■ Consider a Doob exposure martingale with

- $X_{0}=c=E[f(G)]$ and
- X_{m} or $Y_{n}=\mathrm{f}(\mathrm{G})$

If $\left|X_{i+1}-X_{i}\right| \leq 1$ then

$$
\operatorname{Pr}\{|f(G)-E[f(G)]|>\lambda \sqrt{m}\}<2 e^{-\lambda^{2} / 2}
$$

Lipschitz condition

Definition 6

A graph-theoretic function $f(G)$ satisfies the edge (respectively vertex) Lipschitz condition iff $\forall G, G^{\prime}$ that differ only in one edge (respectively vertex) it is:

$$
\left|f(G)-f\left(G^{\prime}\right)\right| \leq 1
$$

Theorem 1

If a graph-theoretic function f satisfies the edge (vertex) Lipschitz condition then the corresponding edge (vertex) exposure martingale X_{i} satisfies

$$
\left|X_{i+1}-X_{i}\right| \leq 1
$$

Example - Chromatic number of a random graph

Definition 7

The Chromatic number $\chi(G)$ is the least number of colors required to color the vertices of a graph so that any adjacent vertices do not have the same color.

Theorem 2

Let G be a graph in $G_{n, p}$ then

$$
\forall \lambda>0: \quad \operatorname{Pr}\{|\chi(G)-E[\chi(G)]|>\lambda \sqrt{n}\}<2 e^{-\lambda^{2} / 2}
$$

Proof of theorem 2

■ Consider the Doob vertex exposure martingale $X_{0}, X_{1} \ldots$ that corresponds to graph-theoretic function $f(G)=\chi(G)$.

- We observe that the Doob vertex exposure martingale satisfies the Lipschitz condition since the exposure of a new vertex may increase the current chromatic number $\chi(G)$ at most by 1 .
■ Applying theorem 1 it holds that $\left|X_{i+1}-X_{i}\right| \leq 1$.
■ We now apply the generalized Azuma inequality with $c=X_{0}=E[\chi(G)]$ and have

$$
\forall \lambda>0: \quad \operatorname{Pr}\{|\chi(G)-E[\chi(G)]|>\lambda \sqrt{n}\}<2 e^{-\lambda^{2} / 2}
$$

since $X_{n}=\chi(G)$

Example Balls and Bins

Suppose there are n balls and n bins. We are randomly throwing each ball into a bin. Define the function $L(n)$ that corresponds to the number of empty bins. Prove that

$$
\forall \lambda>0: \quad \operatorname{Pr}\left\{\left|L(n)-\frac{n}{e}\right|>\lambda \sqrt{n}\right\}<2 e^{-\lambda^{2} / 2}
$$

Proof:

- We define the indicator variable

$$
l_{i}=\left\{\begin{array}{l}
1 i^{t h} \text { bin is empty } \\
0 \text { otherwise }
\end{array}\right.
$$

- Thus, $L(n)=\sum_{i=1}^{n} l_{i}$ is the number of empty bins.

■ $E\left[l_{i}\right]=1 \cdot \operatorname{Pr}\left\{l_{i}=1\right\}+0 \cdot \operatorname{Pr}\left\{l_{i}=0\right\}=\left(1-\frac{1}{n}\right)^{n} \sim \frac{1}{e}$

$$
\text { by L.O.E. } E[L(n)]=E\left[\sum_{i=1}^{n} l_{i}\right]=\sum_{i=1}^{n} E\left[l_{i}\right] \sim n \cdot \frac{1}{e}
$$

Example Balls and Bins

■ Consider the Doob vertex exposure martingale $X_{0}, X_{1} \ldots$ that corresponds to the function $L(n)$ (vertices correspond to balls).

- We observe that Doob vertex exposure martingale satisfies the Lipschitz condition since the exposure of a new vertex (i.e. the throwing a new ball in a bin) may decrease the current number of empty bins $L(n)$ at most by 1 .

■ Applying theorem 1 it holds that $\left|X_{i+1}-X_{i}\right| \leq 1$.

- We now apply generalized Azuma inequality with $c=X_{0}=E[L(n)]$ and have

$$
\forall \lambda>0: \quad \operatorname{Pr}\left\{\left|L(n)-\frac{n}{e}\right|>\lambda \sqrt{n}\right\}<2 e^{-\lambda^{2} / 2}
$$

since $X_{n}=L(n)$ and $E[L(n)] \sim \frac{n}{e}$.

