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Summary of previous lecture

1. The Janson Inequality
2. Example - Triangle-free sparse Random Graphs
3. Example - Paths of length 3 in G, ,,
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Probability theory preliminaries
Martingales
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Doob martingales

Edge exposure martingale

Edge exposure martingale - Example
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Azuma’s inequality
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Probability theory preliminaries

If X and Y are discrete random variables then:

1. Joint probability mass function:
fla,y) =Pr{X =z nY =y}
2. Conditional Probability:

fy) _ flay)

Pr{X =z|Y =y} =
3. Conditional Expectation:
E(X|Y =y] = Zm Pr{X =zlY =y} = Zx Zfa:y)

Remark: E[X|Y =y] = f(y) is actually a random variable.
(depends on the value of Y)
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Probability theory

E[E[X|Y]] = E[X]

Proof:
It is:
f(z,y)

f(y):E[X|Y:y]:Z$'m
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Proof of Lemma 1

= E[E[X|Y]] = E[f(Y)] =) f(y) Pr{Y =y}
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Other useful properties

If X,Y independent = E[X|Y] = E[X]

E[X) + XolY] = E[X1]Y] + E[X2|Y] (linearity)
X1 < Xy = E[X1]Y] < E[X32]Y] (monotonicity)
For random variables, V, U, W it is

E[EVIUW] | W | = E[V|W]
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Martingales

Definition 1

A sequence of r.v. Xg,X1,... 18 a martingale w.r.t. the
sequence Yo, Y1, ... if for all i >0 :

E[X;|Yy, Y1,...,Y 1] = Xs1

Definition 2

A martingale is a sequence Xg, X1,... of random variables so
that

Vi : E[Xi’Xo, 500y Xi—l] = X;_1

(i.e. it is a martingale w.r.t. itself).
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Example

m Consider a bin that initially contains b black balls and w white balls.

m We iteratively choose at random a ball from the bin and replace it
with ¢ balls of the same color.

m Define random variable X; which refers to the percentage of black
balls after i*" iteration.

m The sequence Xo, X1,... is a martingale.

Proof:
Let as denote that after the ¢ — 1 iteration there are b;_1 black
and w;_1 white balls in the bin. Thus,

bi—1

X =L
T b Fwi
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Proof of Example

After the " iteration:

m case 1: The probability of choosing a black ball is

bi—1

Xiqg= b
T b+ wig

If we choose it and replace it with ¢ black balls the bin will
contain:

m b;_1 + c— 1 black balls and

m w;_1 white balls

Thus,
bi-1+c—1

bi-1+wi—1+c—1

X; =
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Proof of Example

m case 2: The probability of choosing a white ball is

Wi—1

1-X;i=—
T b Fwi

If we choose it and replace it with ¢ white balls the bin will
contain :
m b;_1 black balls and
m w;_1 + ¢ — 1 white balls
Thus,
bi—1
bi1+w;_1+c—1

X; =

Sotiris Nikoletseas, Professor The Probabilistic Method 11 / 28



Proof of Example

E[X;[Xo,..., Xi1] =
bi—1 biii1+c—1 wi—1 bi—1

bi 1+ wi1 bi1+wi1+c— 1+bi71 Fwi1 b +wi+c—1
_ b (bi1+c—1)+w;i_1b;_1
(bim1 +wi—1) - (bi—1 +wi—1 +c—1)
bi—1-(bi—1+c—1+wi—1)
(bi—1 +wi—1) - (bi—1 +wi—1+c—1)
_ b
bi—1 + w1

= Agq—1
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Another Example

m A series of fair games (in each game the win probability is
1/2)
m Game 1: bet; =138
 Game i > 1:{ bet; = 2'$ if won in round i — 1
bet; =1$  otherwise
m X; = amount won in the i-th game
(if i-th game lost then X; negative (< 0)).
m Z; = total winnings at end of i-th game.
m Clearly, Z; is martingale w.r.t. X; since:

1 1
E[X;] = = - bet; + 5(—()6751') =0

Zi = ZX:>E ZE

and E[ZZ‘Xl,XQ c. ;Xi—l] = Zi—l + E[Xl] =Zi1
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Lemma 2

If a sequence Xg, X1, ... is a martingale then,

Proof:
Since X; is a martingale, by the definition we have that:

Vi E[Xz’Xo, - 7Xi—1] = Xi—l =
E E[XZ|X07 s )Xi—l] = E[Xz—l] =

E[X;] = E[X;—1] = (inductively)
EB[X;] = E[Xo], Vi
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Properties of martingales

m [t is possible to construct a martingale from any random
variable.

m random variable <+ graph-theoretic function in random
graph
= we can construct a martingale for any graph-theoretic
function.

m The martingale is constructed using a generic way, as
follows.
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Doob Martingale

Let Zy, Z1,...,Z, and let Y a function of the Z; r.v.

Let
X,L':E[Y|Z0,Z1,...,Zi], i:O,l,...,n

Then, Xy, X1,...,X,, is a martingale w.r.t. Zy, Z1,..., 2y,
which is called a Doob martingale.
(Often Xy = E[Y])
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Vi: X; = E[YlZO,Zl, .. 7Zz] =
=>E[X¢\Zo,Zl,---,Zi_1] =

_ E[E[Y\ZO,ZI, o 2| 20y 2, 2
— E[Y|Zo, Z1, ..., Zi1]

= A1
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The Edge Exposure Martingale

Definition 3

Let G be random graph from G, and f(G) be any graph theoretic function.
Arbitrarily label the m = (g) possible edges with the sequence 1,...,m. For
1 < j < m, define the indicator random variable

I — 1leeG
771 0 otherwise

The (Doob) edge exposure martingale is defined to be the sequence of
random variables Xo, ..., Xm such that

Xi = E[f(G)|[1, ..., Ik
while Xo = E[f(GQ)] and X, = f(G).
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The Edge Exposure Martingale - Example

L Gn,1/2
mm=n=23
m [ = chromatic number

m The edges are exposed in
the order “bottom, left,
right”.

o>V D

|
The values Xj, are given by

tracing from the central node to
Figure: Edge exposure martingale leaf node.

Sotiris Nikoletseas, Professor The Probabilistic Method 19 / 28



The Edge Exposure Martingale - Example

Remarks:
= 323 graphs (sample points), every one with probablhty 5°'3°'3=3
m at time ¢ there are i edges exposed (i =0, 1,2, 3)
m when ¢ = 3 all edges are exposed and thus X3 is the function f.
m when ¢ = 0 no edge is exposed and thus Xo = E[f(G)] is constant.
1
8

1
Xo== 3424242424242+ 1)==-16=2

8
| VZ . Xi = E[Xi+1|X0, .. .,Xi] since:

W Xo=25=1.3+1.2=FE[X3|lo,]1, ]
m Xz:2:%~2+%~2:E[Xs\10711»12}
u X2:27% 2+% E[X3|Io, I, I2]
mX;=15=1.1+1. 2—E[X3|10,1'1J2]
" X1:2.25:% 25+ 3 -2 = E[Xa|lo, I1]
= X1:1.75:% 24 3 - 1.5 = E[X2|Ip, I1]
B Xo=2=1225+1 1.75 = E[X1|Io]

2

= X, is a martingale.
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The Vertex Exposure Martingale

Let G be random graph from G, and f(G) be any graph theoretic function.
Arbitrarily label the m = (;) possible edges with the sequence 1,...,m.
Define the set E; 1 <1i <n as the set of all possible edges with vertices in
{1,...,i}. Also, Vj € E;, define the indicator random variable

Ij:{ 16j€G

0 otherwise

Also, define the vector I; = [I,...,I;,...], Vj € Ei.
The (Doob) vertex exposure martingale is defined to be the sequence of
random variables Yo, ..., Y, such that

Y = E[f(O)|I1,..., Ix]
while Yo = E[f(Q)] and Y., = f(G).
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Azuma’s inequality

Definition 5

Let Xo =0, X1, ...X,, be a martingale with

| Xi1 — X4 <1
for all0 <4< m. Let A >0 be arbitrary. Then
Pr{X,, > \W/m} < e~N/2
Generalization:
If Xy = c then

Pr{| X, — ¢| > A\v/m} < 2e /2
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Azuma’s inequality importance

m Let f(G) be a graph-theoretic function.

m Consider a Doob exposure martingale with
m Xy =c=E[f(G)] and
m X, orY, ={G)

If ’X'H—l - Xz’ S 1 then

pe{|1(6) - BLAGN| > avin} < 272

Sotiris Nikoletseas, Professor The Probabilistic Method



Lipschitz condition

Definition 6

A graph-theoretic function f(G) satisfies the edge (respectively
vertex) Lipschitz condition iff VG, G' that differ only in one
edge (respectively vertex) it is:

<1

]f(G) - (@)

Theorem 1

If a graph-theoretic function f satisfies the edge (vertex)
Lipschitz condition then the corresponding edge (vertez)
exposure martingale X; satisfies

| Xip1 — X4 <1
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Example - Chromatic number of a random graph

Definition 7

The Chromatic number x(G) is the least number of colors
required to color the vertices of a graph so that any adjacent
vertices do not have the same color.

Theorem 2
Let G be a graph in Gy, p then

YA>0: Pr{‘x(G)—E[( )]'>)\\/_}<26 /2
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Proof of theorem 2

m Consider the Doob vertex exposure martingale Xo, X ... that
corresponds to graph-theoretic function f(G) = x(G).

m We observe that the Doob vertex exposure martingale satisfies the
Lipschitz condition since the exposure of a new vertex may increase
the current chromatic number x(G) at most by 1.

m Applying theorem 1 it holds that |X;41 — X;| < 1.

m We now apply the generalized Azuma inequality with
¢ = Xo = E[x(G)] and have
YA>0: Pr{‘x(G) - E[x(G)]‘ > )\\/ﬁ} <27 /?

since X,, = x(G)
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Example Balls and Bins

1
Suppose there are n balls and n bins.We are randomly throwing each ball
into a bin. Define the function L(n) that corresponds to the number of
empty bins. Prove that

YA>0: Pr{‘L(n) - %‘ > A\/ﬁ} < o

Proof:
m We define the indicator variable

Lol i'"bin is empty
“7 1 0 otherwise

m Thus, L(n) = >_7_, l; is the number of empty bins.
m Eli]=1-Pr{li=1}+0-Pr{li=0}=(1-1)" ~ 1

by LO.E. E[L(n)] = E [i zl} _ i Ells] ~n- é
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Example Balls and Bins

m Consider the Doob vertex exposure martingale X, X ... that
corresponds to the function L(n) (vertices correspond to balls).

m We observe that Doob vertex exposure martingale satisfies the
Lipschitz condition since the exposure of a new vertex (i.e. the
throwing a new ball in a bin) may decrease the current number of
empty bins L(n) at most by 1.

m Applying theorem 1 it holds that |X;41 — X;| < 1.

m We now apply generalized Azuma inequality with ¢ = Xo = E[L(n)]
and have

YA>0: Pr{’L(n) - %’ > A\/ﬁ} <2e N/

since X,, = L(n) and E[L(n)] ~ 2.
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