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Summary of previous lecture

1. The Janson Inequality

2. Example - Triangle-free sparse Random Graphs

3. Example - Paths of length 3 in Gn,p
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Summary of this lecture

1) Probability theory preliminaries

2) Martingales

3) Example

4) Doob martingales

5) Edge exposure martingale

6) Edge exposure martingale - Example

7) Vertex exposure martingale

8) Azuma’s inequality

9) Lipschitz condition

10) Example - Chromatic number

11) Example - Balls and bins
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Probability theory preliminaries

If X and Y are discrete random variables then:

1. Joint probability mass function:

f(x, y) = Pr{X = x ∩ Y = y}

2. Conditional Probability:

Pr{X = x|Y = y} =
f(x, y)

Pr{Y = y}
=

f(x, y)∑
x f(x, y)

3. Conditional Expectation:

E
[
X|Y = y

]
=
∑
x

x · Pr{X = x|Y = y} =
∑
x

x · f(x, y)∑
x f(x, y)

Remark: E
[
X|Y = y

]
= f(y) is actually a random variable.

(depends on the value of Y)
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Probability theory

Lemma 1

E
[
E[X|Y ]

]
= E[X]

Proof:
It is:

f(y) = E[X|Y = y] =
∑
x

x · f(x, y)

Pr{Y = y}
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Proof of Lemma 1

⇒ E
[
E[X|Y ]

]
= E[f(Y )] =

∑
y

f(y) Pr{Y = y}

=
∑
y

(∑
x

x · f(x, y)

Pr{Y = y}

)
Pr{Y = y}

=
∑
y

(∑
x

x · f(x, y)

)

=
∑
x

x ·

(∑
y

f(x, y)

)
=
∑
x

x · Pr{X = x}

= E[X]

�
Sotiris Nikoletseas, Professor The Probabilistic Method 6 / 28



Other useful properties

1 If X,Y independent ⇒ E[X|Y ] = E[X]

2 E[X1 +X2|Y ] = E[X1|Y ] + E[X2|Y ] (linearity)

3 X1 ≤ X2 ⇒ E[X1|Y ] ≤ E[X2|Y ] (monotonicity)

4 For random variables, V,U,W it is

E
[
E[V |U,W ]

∣∣W ]
= E[V |W ]
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Martingales

Definition 1

A sequence of r.v. X0, X1, . . . is a martingale w.r.t. the
sequence Y0, Y1, . . . if for all i ≥ 0 :

E[Xi|Y0, Y1, . . . , Yi−1] = Xi−1

Definition 2

A martingale is a sequence X0, X1, . . . of random variables so
that

∀i : E[Xi|X0, . . . , Xi−1] = Xi−1

(i.e. it is a martingale w.r.t. itself).
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Example

Consider a bin that initially contains b black balls and w white balls.

We iteratively choose at random a ball from the bin and replace it
with c balls of the same color.

Define random variable Xi which refers to the percentage of black
balls after ith iteration.

The sequence X0, X1, . . . is a martingale.

Proof:
Let as denote that after the i− 1 iteration there are bi−1 black
and wi−1 white balls in the bin. Thus,

Xi−1 =
bi−1

bi−1 + wi−1
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Proof of Example

After the ith iteration:

case 1: The probability of choosing a black ball is

Xi−1 =
bi−1

bi−1 + wi−1

If we choose it and replace it with c black balls the bin will
contain:

bi−1 + c− 1 black balls and
wi−1 white balls

Thus,

Xi =
bi−1 + c− 1

bi−1 + wi−1 + c− 1
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Proof of Example

case 2: The probability of choosing a white ball is

1−Xi−1 =
wi−1

bi−1 + wi−1

If we choose it and replace it with c white balls the bin will
contain :

bi−1 black balls and
wi−1 + c− 1 white balls

Thus,

Xi =
bi−1

bi−1 + wi−1 + c− 1
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Proof of Example

E[Xi|X0, . . . , Xi−1] =

=
bi−1

bi−1 + wi−1
· bi−1 + c− 1

bi−1 + wi−1 + c− 1
+

wi−1
bi−1 + wi−1

· bi−1
bi−1 + wi−1 + c− 1

=
bi−1 · (bi−1 + c− 1) + wi−1bi−1

(bi−1 + wi−1) · (bi−1 + wi−1 + c− 1)

=
bi−1 · (bi−1 + c− 1 + wi−1)

(bi−1 + wi−1) · (bi−1 + wi−1 + c− 1)

=
bi−1

bi−1 + wi−1

= Xi−1

�
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Another Example

A series of fair games (in each game the win probability is
1/2)

Game 1: bet1 = 1 $

Game i > 1 :

{
beti = 2i $ if won in round i− 1
beti = i $ otherwise

Xi = amount won in the i-th game
(if i-th game lost then Xi negative (< 0)).

Zi = total winnings at end of i-th game.

Clearly, Zi is martingale w.r.t. Xi since:

E[Xi] =
1

2
· beti +

1

2
(−beti) = 0

Zi =
∑
i

Xi ⇒ E[Zi] =
∑
i

E[Xi] = 0

and E[Zi|X1, X2 . . . , Xi−1] = Zi−1 + E[Xi] = Zi−1
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Lemma 2

If a sequence X0, X1, . . . is a martingale then,

∀i : E[Xi] = E[X0]

Proof:
Since Xi is a martingale, by the definition we have that:

∀i : E[Xi|X0, . . . , Xi−1] = Xi−1 ⇒

E

[
E[Xi|X0, . . . , Xi−1]

]
= E

[
Xi−1

]
⇒

E[Xi] = E[Xi−1]⇒ (inductively)

E[Xi] = E[X0], ∀ i

�
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Properties of martingales

It is possible to construct a martingale from any random
variable.

random variable ↔ graph-theoretic function in random
graph

⇒ we can construct a martingale for any graph-theoretic
function.

The martingale is constructed using a generic way, as
follows.
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Doob Martingale

Let Z0, Z1, . . . , Zn and let Y a function of the Zi r.v.

Let
Xi = E[Y |Z0, Z1, . . . , Zi], i = 0, 1, . . . , n

Then, X0, X1, . . . , Xn is a martingale w.r.t. Z0, Z1, . . . , Zn,
which is called a Doob martingale.
(Often X0 = E[Y ])
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Proof

∀i : Xi = E[Y |Z0, Z1, . . . , Zi]⇒
⇒ E[Xi|Z0, Z1, . . . , Zi−1] =

= E
[
E[Y |Z0, Z1, . . . , Zi]

∣∣Z0, Z1, . . . , Zi−1

]
=

= E[Y |Z0, Z1, . . . , Zi−1]

= Xi−1

�
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The Edge Exposure Martingale

Definition 3

Let G be random graph from Gn,p and f(G) be any graph theoretic function.
Arbitrarily label the m =

(
n
2

)
possible edges with the sequence 1, . . . ,m. For

1 ≤ j ≤ m, define the indicator random variable

Ij =

{
1 ej ∈ G
0 otherwise

The (Doob) edge exposure martingale is defined to be the sequence of
random variables X0, . . . , Xm such that

Xk = E[f(G)|I1, . . . , Ik]

while X0 = E[f(G)] and Xm = f(G).
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The Edge Exposure Martingale - Example
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Figure: Edge exposure martingale

Gn,1/2

m = n = 3

f = chromatic number

The edges are exposed in
the order “bottom, left,
right”.

The values Xk are given by
tracing from the central node to
leaf node.

Sotiris Nikoletseas, Professor The Probabilistic Method 19 / 28



The Edge Exposure Martingale - Example

Remarks:

∃ 23 graphs (sample points), every one with probability 1
2
· 1
2
· 1
2

= 1
8

at time i there are i edges exposed (i = 0, 1, 2, 3)

when i = 3 all edges are exposed and thus X3 is the function f.

when i = 0 no edge is exposed and thus X0 = E[f(G)] is constant.

X0 =
1

8
· (3 + 2 + 2 + 2 + 2 + 2 + 2 + 1) =

1

8
· 16 = 2

∀i : Xi = E[Xi+1|X0, . . . , Xi] since:

X2 = 2.5 = 1
2
· 3 + 1

2
· 2 = E[X3|I0, I1, I2]

X2 = 2 = 1
2
· 2 + 1

2
· 2 = E[X3|I0, I1, I2]

X2 = 2 = 1
2
· 2 + 1

2
· 2 = E[X3|I0, I1, I2]

X2 = 1.5 = 1
2
· 1 + 1

2
· 2 = E[X3|I0, I1, I2]

X1 = 2.25 = 1
2
· 2.5 + 1

2
· 2 = E[X2|I0, I1]

X1 = 1.75 = 1
2
· 2 + 1

2
· 1.5 = E[X2|I0, I1]

X0 = 2 = 1
2
· 2.25 + 1

2
· 1.75 = E[X1|I0]

⇒ Xi is a martingale.
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The Vertex Exposure Martingale

Definition 4

Let G be random graph from Gn,p and f(G) be any graph theoretic function.
Arbitrarily label the m =

(
n
2

)
possible edges with the sequence 1, . . . ,m.

Define the set Ei 1 ≤ i ≤ n as the set of all possible edges with vertices in
{1, . . . , i}. Also, ∀j ∈ Ei, define the indicator random variable

Ij =

{
1 ej ∈ G
0 otherwise

Also, define the vector Îi = [I1, . . . , Ij , . . .], ∀j ∈ Ei.
The (Doob) vertex exposure martingale is defined to be the sequence of
random variables Y0, . . . , Yn such that

Yk = E[f(G)|Î1, . . . , Îk]

while Y0 = E[f(G)] and Yn = f(G).
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Azuma’s inequality

Definition 5

Let X0 = 0, X1, . . . Xm be a martingale with

|Xi+1 −Xi| ≤ 1

for all 0 ≤ i < m. Let λ > 0 be arbitrary. Then

Pr{Xm > λ
√
m} < e−λ

2/2

Generalization:
If X0 = c then

Pr{|Xm − c| > λ
√
m} < 2e−λ

2/2
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Azuma’s inequality importance

Let f(G) be a graph-theoretic function.

Consider a Doob exposure martingale with

X0 = c = E[f(G)] and
Xm or Yn = f(G)

If |Xi+1 −Xi| ≤ 1 then

Pr

{∣∣∣∣f(G)− E[f(G)]

∣∣∣∣ > λ
√
m

}
< 2e−λ

2/2
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Lipschitz condition

Definition 6

A graph-theoretic function f(G) satisfies the edge (respectively
vertex) Lipschitz condition iff ∀G,G′ that differ only in one
edge (respectively vertex) it is:∣∣∣∣f(G)− f(G′)

∣∣∣∣ ≤ 1

Theorem 1

If a graph-theoretic function f satisfies the edge (vertex)
Lipschitz condition then the corresponding edge (vertex)
exposure martingale Xi satisfies

|Xi+1 −Xi| ≤ 1
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Example - Chromatic number of a random graph

Definition 7

The Chromatic number χ(G) is the least number of colors
required to color the vertices of a graph so that any adjacent
vertices do not have the same color.

Theorem 2

Let G be a graph in Gn,p then

∀λ > 0 : Pr

{∣∣∣∣χ(G)− E[χ(G)]

∣∣∣∣ > λ
√
n

}
< 2e−λ

2/2
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Proof of theorem 2

Consider the Doob vertex exposure martingale X0, X1 . . . that
corresponds to graph-theoretic function f(G) = χ(G).

We observe that the Doob vertex exposure martingale satisfies the
Lipschitz condition since the exposure of a new vertex may increase
the current chromatic number χ(G) at most by 1.

Applying theorem 1 it holds that |Xi+1 −Xi| ≤ 1.

We now apply the generalized Azuma inequality with
c = X0 = E[χ(G)] and have

∀λ > 0 : Pr

{∣∣∣∣χ(G)− E[χ(G)]

∣∣∣∣ > λ
√
n

}
< 2e−λ

2/2

since Xn = χ(G)

�
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Example Balls and Bins

Suppose there are n balls and n bins.We are randomly throwing each ball
into a bin. Define the function L(n) that corresponds to the number of
empty bins. Prove that

∀λ > 0 : Pr

{∣∣∣∣L(n)− n

e

∣∣∣∣ > λ
√
n

}
< 2e−λ

2/2

Proof:

We define the indicator variable

li =

{
1 ithbin is empty
0 otherwise

Thus, L(n) =
∑n
i=1 li is the number of empty bins.

E[li] = 1 · Pr{li = 1}+ 0 · Pr{li = 0} =
(
1− 1

n

)n ∼ 1
e

by L.O.E. E[L(n)] = E

[
n∑
i=1

li

]
=

n∑
i=1

E[li] ∼ n ·
1

e
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Example Balls and Bins

Consider the Doob vertex exposure martingale X0, X1 . . . that
corresponds to the function L(n) (vertices correspond to balls).

We observe that Doob vertex exposure martingale satisfies the
Lipschitz condition since the exposure of a new vertex (i.e. the
throwing a new ball in a bin) may decrease the current number of
empty bins L(n) at most by 1.

Applying theorem 1 it holds that |Xi+1 −Xi| ≤ 1.

We now apply generalized Azuma inequality with c = X0 = E[L(n)]
and have

∀λ > 0 : Pr

{∣∣∣∣L(n)− n

e

∣∣∣∣ > λ
√
n

}
< 2e−λ

2/2

since Xn = L(n) and E[L(n)] ∼ n
e

.

�
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