The Probabilistic Method - Probabilistic Techniques

Lecture 5: "The Second Moment Method"

Sotiris Nikoletseas Professor

Computer Engineering and Informatics Department 2020-2021

Summary of previous lecture

Variation of Linearity of Expectation method: Deletion Method

- Method's basic idea: prove existence of a structure "similar" to the desired one and modify it accordingly.
- Examples
[1 An improved lower bound for Ramsey numbers.
[2 Independent sets (Turán's Theorem, 1941).

Summary of this lecture

The Second Moment
i. The Variance of a random variable

国. The Chebyshev Inequality
囲 The Second Moment method
iv Covariance
v. Alternative techniques of estimation of the variance of a sum of indicator variables.
vi Example - Cliques of size 4 in random graphs.

Variance

Variance:
■ is the most vital statistic of a r.v. beyond expectation.

- is defined as $\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]$
- properties:
- $\operatorname{Var}(X)=E\left[X^{2}\right]-E^{2}[X]$
- $\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X), c$ constant
- X, Y independent $\Rightarrow \operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$

Standard deviation:

$$
\sigma=\sqrt{\operatorname{Var}[X]} \Rightarrow \operatorname{Var}[X]=\sigma^{2}
$$

Chebyshev Inequality

Theorem 1 (Chebyshev Inequality)

Let X be a random variable with expected value μ. Then for any $t>0$:

$$
\operatorname{Pr}[|X-\mu| \geq t] \leq \frac{\operatorname{Var}[X]}{t^{2}}
$$

Proof:

$$
\begin{gathered}
\operatorname{Pr}[|X-\mu| \geq t]=\operatorname{Pr}\left[(X-\mu)^{2} \geq t^{2}\right] \\
\underset{\text { Markov }}{\leq} \frac{E\left[(X-\mu)^{2}\right]}{t^{2}}=\frac{\operatorname{Var}[X]}{t^{2}}
\end{gathered}
$$

Chebyshev Inequality

Alternative Proof:

$$
\begin{gathered}
\operatorname{Var}[X]=E\left[(X-\mu)^{2}\right]=\sum_{x}(x-\mu)^{2} \operatorname{Pr}\{X=x\} \\
\geq \sum_{|x-\mu| \geq t}(x-\mu)^{2} \operatorname{Pr}\{X=x\} \\
\geq \sum_{|x-\mu| \geq t} t^{2} \operatorname{Pr}\{X=x\} \\
=t^{2} \sum_{|x-\mu| \geq t} \operatorname{Pr}\{X=x\}=t^{2} \operatorname{Pr}\{|X-\mu| \geq t\} \\
\Rightarrow \operatorname{Pr}\{|X-\mu| \geq t\} \leq \frac{\operatorname{Var}[X]}{t^{2}}
\end{gathered}
$$

Chebyshev Inequality - application

if $t=\sigma$ then $\operatorname{Pr}[|X-\mu| \geq \sigma] \leq \frac{\sigma^{2}}{\sigma^{2}}=1$ (trivial bound)
if $t=2 \sigma$ then $\operatorname{Pr}[|X-\mu| \geq 2 \sigma] \leq \frac{\sigma^{2}}{(2 \sigma)^{2}}=\frac{1}{4}$
引
if $t=k \sigma$ then $\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq \frac{\sigma^{2}}{(k \sigma)^{2}}=\frac{1}{k^{2}}$
In other words, this inequality bounds the concentration of a random variable around its mean.
A small variance implies high concentration.

The Second Moment Method

Theorem 2

For any random variable X it holds that: if $E[X] \rightarrow \infty$ and $\operatorname{Var}[X]=o\left(E^{2}[X]\right)$ then $\operatorname{Pr}\{X=0\} \rightarrow 0$

Proof: Since

$$
|X-E[X]| \geq E[X] \Rightarrow\left\{\begin{array}{l}
X \geq 2 E[X] \quad \text { or } \\
X \leq 0
\end{array}\right.
$$

$$
\operatorname{Pr}\{X=0\} \leq \operatorname{Pr}\{|X-E[X]| \geq E[X]\} \underset{t=\bar{E}[X]}{\leq} \frac{\operatorname{Var}[X]}{E^{2}[X]}
$$

if $\frac{\operatorname{Var}[X]}{E^{2}[X]} \rightarrow 0 \Leftrightarrow \operatorname{Var}[X]=o\left(E^{2}[X]\right)$ then $\operatorname{Pr}\{X=0\} \rightarrow 0 \square$
So, we need to estimate the variance. Actually, we need to properly bound it in terms of the mean.

Covariance

Covariance

Let X and Y be random variables. Then

$$
\operatorname{Cov}(X, Y)=E[X Y]-E[X] \cdot E[Y]
$$

Remark:

- Covariance is a measure of association between two random variables.
- $\operatorname{Cov}(X, X)=\operatorname{Var}[X]$
- if X, Y are independent r.v. then $\operatorname{Cov}(X, Y)=0$

■ $|\operatorname{Cov}(X, Y)| \uparrow \Rightarrow$ stochastic dependence of $X, Y \uparrow$

Covariance

Variance - Covariance

Theorem 3

Consider a sum of n random variables
$X=X_{1}+X_{2}+\cdots+X_{n}$. It holds that:

$$
\operatorname{Var}[X]=\sum_{1 \leq i, j \leq n} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

Remark: The sum is over ordered pairs, i.e. we take both $\operatorname{Cov}\left(X_{i}, X_{j}\right)$ and $\operatorname{Cov}\left(X_{j}, X_{i}\right)$.

Proof of theorem 3

The proof is by induction on n.
We show the case $n=2$:

$$
\begin{gathered}
\sum_{1 \leq i, j \leq 2} \operatorname{Cov}\left(X_{i}, X_{j}\right)=\operatorname{Cov}\left(X_{1}, X_{1}\right)+\operatorname{Cov}\left(X_{1}, X_{2}\right)+ \\
+\operatorname{Cov}\left(X_{2}, X_{1}\right)+\operatorname{Cov}\left(X_{2}, X_{2}\right)= \\
E\left[X_{1}^{2}\right]-E^{2}\left[X_{1}\right]+E\left[X_{1} X_{2}\right]-E\left[X_{1}\right] E\left[X_{2}\right]+E\left[X_{2} X_{1}\right]-E\left[X_{2}\right] E\left[X_{1}\right]+ \\
+E\left[X_{2}^{2}\right]-E^{2}\left[X_{2}\right]= \\
=E\left[X_{1}^{2}\right]+E\left[X_{2}^{2}\right]+2 E\left[X_{1} X_{2}\right]-\left(E^{2}\left[X_{1}\right]+E^{2}\left[X_{2}\right]+2 E\left[X_{1}\right] E\left[X_{2}\right]\right)= \\
=E\left[X_{1}^{2}+X_{2}^{2}+2 X_{1} X_{2}\right]-\left(E\left[X_{1}\right]+E\left[X_{2}\right]\right)^{2} \\
=E\left[\left(X_{1}+X_{2}\right)^{2}\right]-E^{2}\left[\left(X_{1}+X_{2}\right)\right]= \\
=\operatorname{Var}\left[X_{1}+X_{2}\right]
\end{gathered}
$$

Covariance

An upper bound of the sum of indicator r.v.

Theorem 4
Let $X_{i} 1 \leq i \leq n$ be indicator random variables.

$$
X_{i}= \begin{cases}1 & p_{i} \\ 0 & 1-p_{i}\end{cases}
$$

Let X be their sum: $X=X_{1}+X_{2}+\cdots+X_{n}$. It holds that:

$$
\operatorname{Var}[X] \leq E[X]+\sum_{1 \leq i \neq j \leq n} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

$$
\begin{aligned}
& \text { Proof: } \\
& \operatorname{Var}[X]=\sum_{1 \leq i, j \leq n} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& \operatorname{Cov}\left(X_{i}, X_{i}\right)=E\left[X_{i} X_{i}\right]-E\left[X_{i}\right] E\left[X_{i}\right]=E\left[\left(X_{i}\right)^{2}\right]-E^{2}\left[X_{i}\right]=\operatorname{Var}\left[X_{i}\right]
\end{aligned}
$$

Covariance

$$
\begin{aligned}
& \operatorname{Var}\left[X_{i}\right]=\left(1-p_{i}\right)^{2} \cdot p_{i}+\left(0-p_{i}\right)^{2} \cdot\left(1-p_{i}\right)=p_{i}\left(1-p_{i}\right) \leq p_{i}=E\left[X_{i}\right] \\
& \qquad \operatorname{Var}[X]=\sum_{1 \leq i \leq n} \operatorname{Cov}\left(X_{i}, X_{i}\right)+\sum_{1 \leq i \neq j \leq n} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =\sum_{1 \leq i \leq n} \operatorname{Var}\left[X_{i}\right]+\sum_{1 \leq i \neq j \leq n} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& \leq \sum_{1 \leq i \leq n} E\left[X_{i}\right]+\sum_{1 \leq i \neq j \leq n} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =E[X]+\sum_{1 \leq i \neq j \leq n} \operatorname{Cov}\left(X_{i}, X_{j}\right)
\end{aligned}
$$

Bounding the Variance

■ Suppose that $X=X_{1}+X_{2}+\cdots+X_{n}$ where X_{i} is the indicator r.v. for event A_{i}.
■ For indices i, j we define the operator \sim and write $i \sim j$ if $i \neq j$ and the events A_{i} and A_{j} are not independent. (non-trivial dependence)
■ We define

$$
\Delta=\sum_{i \sim j} \operatorname{Pr}\left\{A_{i} \wedge A_{j}\right\}
$$

The sum is over ordered pairs.

$$
\begin{gathered}
\operatorname{Cov}\left(X_{i}, X_{j}\right)=E\left[X_{i} X_{j}\right]-E\left[X_{i}\right] E\left[X_{j}\right] \leq E\left[X_{i} X_{j}\right]=\operatorname{Pr}\left\{A_{i} \wedge A_{j}\right\} \\
\Rightarrow \operatorname{Var}[X] \leq E[X]+\Delta
\end{gathered}
$$

The Basic Theorem

Theorem 5
If $E[X] \rightarrow \infty$ and $\Delta=o\left(E^{2}[X]\right)$ then $\operatorname{Pr}\{X=0\} \rightarrow 0$
Proof:

$$
\operatorname{Pr}\{X=0\} \leq \frac{\operatorname{Var}[X]}{E^{2}[X]} \leq \frac{E[X]+\Delta}{E^{2}[X]}=\frac{1}{E[X]}+\frac{\Delta}{E^{2}[X]} \rightarrow 0
$$

A variation (I)

Symmetric events:
Events A_{i} and A_{j} are symmetric if and only if

$$
\operatorname{Pr}\left\{X_{i} \mid X_{j}=1\right\}=\operatorname{Pr}\left\{X_{j} \mid X_{i}=1\right\}
$$

- In other words, the conditional probability of a pair of events is independent of the "order" of conditioning.
- Symmetry applies in almost all graphotheoretical properties because of symmetry of corresponding subgraphs which are set of vertices (i.e. the conditioning affects the intersection and depends on its size).

A variation (II)

We define

$$
\Delta^{*}=\sum_{j \sim i} \operatorname{Pr}\left\{A_{j} \mid A_{i}\right\}
$$

Lemma: $\Delta=\Delta^{*} \cdot E[X]$
Proof:

$$
\begin{gathered}
\Delta=\sum_{i \sim j} \operatorname{Pr}\left\{A_{i} \wedge A_{j}\right\}=\sum_{i \sim j} \operatorname{Pr}\left\{A_{i}\right\} \operatorname{Pr}\left\{A_{j} \mid A_{i}\right\} \\
=\sum_{i} \sum_{j \sim i} \operatorname{Pr}\left\{A_{i}\right\} \operatorname{Pr}\left\{A_{j} \mid A_{i}\right\} \\
=\sum_{i} \operatorname{Pr}\left\{A_{i}\right\} \sum_{j \sim i} \operatorname{Pr}\left\{A_{j} \mid A_{i}\right\} \\
=\Delta^{*} \cdot \sum_{i} \operatorname{Pr}\left\{A_{i}\right\} \\
\Rightarrow \Delta=\Delta^{*} \cdot E[X]
\end{gathered}
$$

The basic theorem of the variation

Change of previous theorem's condition:

$$
\begin{gathered}
\Delta=o\left(E^{2}[X]\right) \\
\Leftrightarrow \Delta^{*} \cdot E[X]=o\left(E^{2}[X]\right) \\
\Leftrightarrow \Delta^{*}=o(E[X])
\end{gathered}
$$

> Theorem 6
> If $E[X] \rightarrow \infty$ and $\Delta^{*}=o(E[X])$ then $\operatorname{Pr}\{X=0\} \rightarrow 0$

Threshold functions in $G_{n, p}$

Definition 1

$$
\begin{aligned}
p_{o} & =p_{o}(n) \text { is a threshold of property } A \text { iff } \\
& \square p \gg p_{o} \Rightarrow \operatorname{Pr}\left\{G_{n, p} \text { has the property } A\right\} \rightarrow 1 \\
& p \ll p_{o} \Rightarrow \operatorname{Pr}\left\{G_{n, p} \text { has the property } A\right\} \rightarrow 0
\end{aligned}
$$

Typical thresholds:

- giant component: $\frac{c}{n}$ (c constant)
- connectivity: $\frac{c \log n}{n}$
- hamiltonicity: $\frac{c \log n}{n}$

Example

Existence of complete subgraph of size 4 in $G_{n, p}$

Theorem 7

Let A be the property of existence of K_{4} cliques in $G_{n, p}$. The threshold function for A is $p_{o}(n)=n^{-2 / 3}$.

Proof:

- Let S be any fixed set of 4 vertices.
- Define r.v. X that counts the number of cliques of size 4.
- $X=\sum_{S,|S|=4} X_{S}$ where X_{S} is an indicator variable:

$$
X_{S}= \begin{cases}1 & \mathrm{~S} \text { is clique } \\ 0 & \text { otherwise }\end{cases}
$$

- $E\left[X_{S}\right]=p^{6}$

Proof of theorem 7

- By Linearity of expectation

$$
E[X]=E\left[\sum_{S,|S|=4} X_{S}\right]=\sum_{S,|S|=4} E\left[X_{S}\right]=\binom{n}{4} p^{6} \sim n^{4} p^{6}
$$

- $E[X]=n^{4} p^{6} \ll 1 \Leftrightarrow p \ll n^{-2 / 3}$
- If $p \ll n^{-2 / 3} \Rightarrow E[X] \rightarrow 0 \Rightarrow$ non-existence w.h.p.
- Also, clearly $p \gg n^{-2 / 3} \Rightarrow E[X] \rightarrow \infty$.

Proof of theorem 7

- All the X_{S} are symmetric and so, these values $p \gg n^{-2 / 3}$ must satisfy $\Delta^{*}=o(E[X])$ where $\Delta^{*}=\sum_{j \sim i} \operatorname{Pr}\left\{A_{j} \mid A_{i}\right\}$. The event A_{i} is defined as "the set S_{i} is a clique of size 4 "
- $j \sim i$ means that A_{i}, A_{j} are not independent and $i \neq j$
- Here, $A_{j} \sim A_{i}$ if and only if A_{j} and A_{i} have common edges (but less than four edges).
■ So, $A_{j} \sim A_{i}$ if and only if $\left|S_{i} \cap S_{j}\right|=2$ or 3 .

Proof of theorem 7

$1\left|S_{i} \cap S_{j}\right|=2$

- There is only 1 common edge $\Rightarrow \operatorname{Pr}\left\{A_{j} \mid A_{i}\right\}=p^{5}$
- There are $\binom{4}{2}\binom{n-4}{s^{2}}=O\left(n^{2}\right)$ different ways to choose the set S_{j} such that $\left|S_{i} \cap S_{j}\right|=2$.
2 $\left|S_{i} \cap S_{j}\right|=3$
- There are 3 common edges so $\operatorname{Pr}\left\{A_{j} \mid A_{i}\right\}=p^{3}$
- There are $\binom{4}{3}\binom{n-4}{1}=O(n)$ different ways to choose the set S_{j} such that $\left|S_{i} \cap S_{j}\right|=3$.

$$
\begin{gathered}
\Delta^{*}=\sum_{2 \leq\left|S_{i} \cap S_{j}\right| \leq 3} \operatorname{Pr}\left\{A_{j} \mid A_{i}\right\}=\sum_{\left|S_{i} \cap S_{j}\right|=2} \operatorname{Pr}\left\{A_{j} \mid A_{i}\right\}+\sum_{\left|S_{i} \cap S_{j}\right|=3} \operatorname{Pr}\left\{A_{j} \mid A_{i}\right\} \\
\sim n^{2} \cdot p^{5}+n \cdot p^{3}
\end{gathered}
$$

Proof of theorem 7

When $p=n^{-2 / 3}$ then:

$$
\frac{\Delta^{*}}{E[X]} \sim \frac{n^{2} \cdot p^{5}+n \cdot p^{3}}{n^{4} \cdot p^{6}}=\frac{1}{n^{2} \cdot p}+\frac{1}{n^{3} \cdot p^{3}}=\frac{1}{n^{\frac{4}{3}}}+\frac{1}{n} \rightarrow 0
$$

So, indeed, for that value of p we have

$$
\Delta^{*}=o(E[X])
$$

and a K_{4} exists w.h.p.

■ This, obviously holds for larger p values too, because of monotonicity.

