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Summary of previous lecture

i. Proofs of existence using the Linearity of Expectation
method

Methodology
(1) X =

∑
Xi

(2) Calculate E[X]
(3) ∃x ≥ E[X] and ∃x ≤ E[X]

Examples
(1) Tournament with at least (n− 1)!2−(n−1)Hamiltonian

cycles.
(2) Every graph G = (V,E) has a bipartite subgraph with at

least |E|
2

edges.

ii. Non-existence proofs using the Markov Inequality
Methodology
(1) Pr[X ≥ t] ≤ E[X]

t
(t > 0)

(2) t = 1⇒ Pr[X ≥ 1] ≤ E[X]
(3) if E[X]→ 0⇒ Pr[X = 0]→ 1

Example: 6 ∃ d.s. of size < lnn in Gn, 12
w.h.p.

Sotiris Nikoletseas, Professor The Probabilistic Method 2 / 18



Summary of this lecture

i. Non-existence proofs

Example: Satisfiability of boolean formulas (SAT).

ii. Linearity of Expectation

Example: Dominating sets in arbitrary graphs.

iii. A variation of Linearity of Expectation method: The
Deletion Method

Method’s basic idea.
Examples

(1) An improved lower bound for Ramsey numbers.
(2) Independent sets (Turán’s Theorem, 1941).
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Satisfiability Problem (SAT)
Importance

many practical applications

program and machine testing
artificial intelligence
VLSI design and testing (0,1 voltage values of logic gates)

is a fundamental problem for computational complexity.

is the first known NP-complete problem, as proved by
Stephen Cook in 1971 and independently by Leonid Levin
in 1973.
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Satisfiability Problem (SAT)
Terminology and Definition

Literal = a variable or its negation
Clause = a disjunction of literals
Conjunctive Normal Form (CNF) = a formula F that is a
conjunction of clauses

F =

(∨
i

li

)
∧

∨
j

lj

 ∧ · · · ∧(∨
k

lk

)
Truth assignment: a set of boolean (0, 1) values to the n
variables. ⇒ ∃ 2n truth assignments.
Satisfying truth assignment: one that makes F true (i.e., it
satisfies all its clauses).

Definition 1 (SAT)

Determine if there exist a truth assignment of n variables such
that F = 1 (i.e., is there a satisfying truth assignment?).
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Satisfiability Problem (SAT)
Special Cases

Definition 2 (k-SAT)

All clauses contain exactly k literals.

k = 3: minimum value for which k-SAT is NP-hard.

k = 2: ∃ polynomial algorithms.

Random boolean formulas of 3-SAT:

1 For each clause, choose independently and equiprobably
the 3 variables that are contained in it.

2 For each variable x in a clause, choose eqiuprobably if it
will be x or x̄.
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Satisfiability Problem (SAT)
Threshold Performance

Let F be a random boolean formula with n variables and
m = cn clauses.
Intuition:

c ↑ ⇒ Pr[satisfiability] ↓
c ↓ ⇒ Pr[satisfiability] ↑

Experimental results: ∃ threshold c∗ such that:

c > c∗ ⇒ non-satisfiable w.h.p.

c < c∗ ⇒ satisfiable w.h.p.
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(I) Example of non-existence proofs

Theorem 1

For any c ≥ 5.191,in a 3-SAT problem with n variables and
m = cn clauses, Pr[satisfiability]→ 0 as n→∞

Proof:

1. We construct a random sample space by determining the
value of each variable, equiprobably for the two options (0,1)
and independently for each variable. Clearly, the sample
points of this space are random truth assignments. Let A be
any fixed assignment.

2. Define r.v. X that corresponds to the number of satisfying
truth assignments.

3. a. X =
∑

AXA where XA are indicator variables

XA =

{
1 A is a satisfying t.a.
0 otherwise
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Proof of theorem 1

b. Calculate E[X]: Using linearity of expectation:

E[X] = E

[∑
A

XA

]
=
∑
A

E[XA]

Calculate expectation of indicator variable XA:

E[XA] = Pr{A is a satisfying t.a.} =

(
7

8

)m
So,

E[X] =
∑
A

E[XA] = 2n
(

7

8

)cn
c. if 2n

(
7
8

)cn → 0⇒ E[X]→ 0

⇔ if c ≥ log 8
7
2 = 5.191 then E[X]→ 0

4. Pr[X = 0]→ 1⇒ w.h.p. 6 ∃ satisfying truth assignment.
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(II)Example: Dominating sets in arbitrary graphs

Theorem 2

Any graph G = (V,E) on n vertices with minimum degree δ > 1

has a dominating set of size at most n1+ln(δ+1)
δ+1

Proof:

We construct a random sample space by choosing for each
vertex if it is contained or not in a set X with probability
p = ln(δ+1)

δ+1 (X is a d.s. under construction)
Define YX the set that contains vertices which

are not contained in X and
are not neighbours of any vertex in X

Clearly, X ∪ YX is a dominating set.

By Linearity of Expectation:
E[|X ∪ YX |] = E[|X|] + E[|YX |] (X,Y disjoint)

|X| ∼ B(n, p)⇒ E[|X|] = np = n ln(δ+1)
δ+1
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Proof of theorem 2

Pr[u ∈ YX ] = Pr[u 6∈ X ∩ ∀v ∈ X : (u, v) not an edge]

⇒ Pr[u ∈ YX ] = (1− p) · (1− p)d(u) = (1− p)1+d(u)

≤ (1− p)1+δ ≤ e−p(1+δ) = e−
ln(δ+1)
δ+1

(1+δ) = e−ln(δ+1) = 1
δ+1

Thus, E[YX ] ≤ n 1
δ+1

E[|X ∪ YX |] = E[|X|] + E[|YX |] ≤ n ln(δ+1)
δ+1 + n 1

δ+1

Thus, there must exist a d.s. of size ≤ n1+ln(δ+1)
δ+1
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The Deletion Method
Basic idea

(1) Prove the existence of a structure that:

doesn’t have the desired property but
it is “very similar” to have the desired property.

(2) Modify the random structure (e.g. delete problematic parts
of it) in order to have a structure with the desired property.
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The Deletion Method
Example - An improved lower bound for Ramsey numbers

Definition 3

The diagonal ramsey number R(k, k) is the smallest integer n
such that in any two-coloring of the edges of the complete graph
on n vertices Kn there is a monochromatic Kk.
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The Deletion Method
Example - An improved lower bound for Ramsey numbers

Theorem 3

For any integer n: R(k, k) > n−
(
n
k

)
21−(k2)

Proof:

Construct a probability sample space of edge coloring by
two-coloring at random, equiprobably (for the two colors)
and independently the edges of Kn.

Let S be any fixed set of k vertices.

We define the r.v. X =
∑

S,|S|=kXS that corresponds to
the number of monochromatic sets and XS :

XS =

{
1 S is monochromatic
0 otherwise

E[XS ] = Pr[S is monochromatic] = 2
(
1
2

)(k2) = 21−(k2)
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Proof of theorem 3

By linearity of expectation:

E[X] = E
[∑

S,|S|=kXS

]
=
∑

S E[XS ] =
(
n
k

)
21−(k2)

∃ point: X ≤ E[X]⇒ ∃ edge two-coloring of Kn of at most(
n
k

)
21−(k2) monochromatic sets of size k.

If we remove at most 1 vertex from any set S we have a

graph of at least n−
(
n
k

)
21−(k2) vertices with no

monochromatic subsets of size k.

Thus, R(k, k) > n−
(
n
k

)
21−(k2)
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Example 2 - Independent set in arbitrary graphs

Definition 4 (Independent Set)

An independent set is a set of vertices such that for every two
vertices in it, there is no edge connecting them.

Theorem 4 (Turán, 1941)

Consider a graph G = (V,E) of n vertices and nd
2 edges. Then,

G contains an independent set of size at least n
2d .
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Proof of theorem 4

We construct a random sample space by choosing for each
vertex if it is contained or not in a set X (with probability
p it is contained), independently for each vertex. X is an
i.s. under construction.

Let Y be the number of edges between vertices of X.

We can denote Y =
∑

e Ye where

Ye =

{
1 e is an edge between vertices of X
0 otherwise

E[Ye] = p2

Thus, E[Y ] =
∑

eE[Ye] = |E|p2 = nd
2 p

2

|X| ∼ B(n, p)⇒ E[|X|] = np

By Linearity of Expectation
E [|X| − |Y |] = E[|X|]− E[|Y |] = np− nd

2 p
2
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Proof of theorem 4

An independent set has the maximum value of |X| − |Y |.
The value p = 1

d maximizes the expectation of the
difference |X| − |Y | which becomes:

E [|X| − |Y |] =
n

2d

∃ point such that |X| − |Y | ≥ E [|X| − |Y |] = n
2d

∃ set of vertices such that |X| ≥ |Y |+ n
2d

∃ set of vertices such that # vertices ≥ #edges + n
2d

We can modify X by removing one vertex from each edge
inside X. We obtain a set with at least n

2d vertices and no
edges, which is clearly independent.

∃ independent set of size at least, n
2d .
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