The Probabilistic Method - Probabilistic Techniques

Lecture 4: "The Deletion Method" (and more examples from previous lecture)

Sotiris Nikoletseas Professor

Computer Engineering and Informatics Department

$$
2017-2018
$$

Summary of previous lecture

i. Proofs of existence using the Linearity of Expectation method

- Methodology
(1) $X=\sum X_{i}$
(2) Calculate $E[X]$
(3) $\exists x \geq E[X]$ and $\exists x \leq E[X]$
- Examples
(1) Tournament with at least $(n-1)!2^{-(n-1)}$ Hamiltonian cycles.
(2) Every graph $G=(V, E)$ has a bipartite subgraph with at least $\frac{|E|}{2}$ edges.
ii. Non-existence proofs using the Markov Inequality

■ Methodology
(1) $\operatorname{Pr}[X \geq t] \leq \frac{E[X]}{t} \quad(t>0)$
(2) $t=1 \Rightarrow \operatorname{Pr}[X \geq 1] \leq E[X]$
(3) if $E[X] \rightarrow 0 \Rightarrow \operatorname{Pr}[X=0] \rightarrow 1$

- Example: \nexists d.s. of size $<\ln n$ in $G_{n, \frac{1}{2}}$ w.h.p.

Summary of this lecture

i. Non-existence proofs

- Example: Satisfiability of boolean formulas (SAT).
ii. Linearity of Expectation
- Example: Dominating sets in arbitrary graphs.
iii. A variation of Linearity of Expectation method: The Deletion Method
- Method's basic idea.
- Examples
(1) An improved lower bound for Ramsey numbers.
(2) Independent sets (Turán's Theorem, 1941).

Satisfiability Problem (SAT)

Importance

- many practical applications
- program and machine testing
- artificial intelligence
- VLSI design and testing (0,1 voltage values of logic gates)
- is a fundamental problem for computational complexity.
- is the first known NP-complete problem, as proved by Stephen Cook in 1971 and independently by Leonid Levin in 1973.

Satisfiability Problem (SAT)

Terminology and Definition

- Literal $=$ a variable or its negation
- Clause $=$ a disjunction of literals
- Conjunctive Normal Form (CNF) $=$ a formula F that is a conjunction of clauses

$$
F=\left(\bigvee_{i} l_{i}\right) \wedge\left(\bigvee_{j} l_{j}\right) \wedge \cdots \wedge\left(\bigvee_{k} l_{k}\right)
$$

- Truth assignment: a set of boolean $(0,1)$ values to the n variables. $\Rightarrow \exists 2^{n}$ truth assignments.
- Satisfying truth assignment: one that makes F true (i.e., it satisfies all its clauses).

Definition 1 (SAT)

Determine if there exist a truth assignment of n variables such that $F=1$ (i.e., is there a satisfying truth assignment?).

Satisfiability Problem (SAT) Special Cases

Definition 2 (k-SAT)

All clauses contain exactly k literals.

■ $k=3$: minimum value for which k-SAT is NP-hard.

- $k=2$: \exists polynomial algorithms.

Random boolean formulas of 3-SAT:
1 For each clause, choose independently and equiprobably the 3 variables that are contained in it.

2 For each variable x in a clause, choose eqiuprobably if it will be x or \bar{x}.

Satisfiability Problem (SAT)
 Threshold Performance

Let F be a random boolean formula with n variables and $m=c n$ clauses.
Intuition:

- $c \uparrow \Rightarrow \operatorname{Pr}[$ satisfiability $] \downarrow$
- $c \downarrow \Rightarrow \operatorname{Pr}[$ satisfiability $] \uparrow$

Experimental results: \exists threshold c^{*} such that:
■ $c>c^{*} \Rightarrow$ non-satisfiable w.h.p.
■ $c<c^{*} \Rightarrow$ satisfiable w.h.p.

(I) Example of non-existence proofs

Theorem 1

For any $c \geq 5.191$,in a 3 -SAT problem with n variables and $m=$ cn clauses, $\operatorname{Pr}[$ satisfiability $] \rightarrow 0$ as $n \rightarrow \infty$

Proof:

1. We construct a random sample space by determining the value of each variable, equiprobably for the two options $(0,1)$ and independently for each variable. Clearly, the sample points of this space are random truth assignments. Let A be any fixed assignment.
2. Define r.v. X that corresponds to the number of satisfying truth assignments.
3. a. $X=\sum_{A} X_{A}$ where X_{A} are indicator variables

$$
X_{A}= \begin{cases}1 & \text { A is a satisfying t.a. } \\ 0 & \text { otherwise }\end{cases}
$$

Proof of theorem 1

b. Calculate $E[X]$: Using linearity of expectation:

$$
E[X]=E\left[\sum_{A} X_{A}\right]=\sum_{A} E\left[X_{A}\right]
$$

- Calculate expectation of indicator variable X_{A} :

$$
E\left[X_{A}\right]=\operatorname{Pr}\{\mathrm{A} \text { is a satisfying t.a. }\}=\left(\frac{7}{8}\right)^{m}
$$

- So,

$$
E[X]=\sum_{A} E\left[X_{A}\right]=2^{n}\left(\frac{7}{8}\right)^{c n}
$$

c. if $2^{n}\left(\frac{7}{8}\right)^{c n} \rightarrow 0 \Rightarrow E[X] \rightarrow 0$
\Leftrightarrow if $c \geq \log _{\frac{8}{7}} 2=5.191$ then $E[X] \rightarrow 0$
4. $\operatorname{Pr}[X=0] \rightarrow 1 \Rightarrow$ w.h.p. \nexists satisfying truth assignment.

(II)Example: Dominating sets in arbitrary graphs

Theorem 2

Any graph $G=(V, E)$ on n vertices with minimum degree $\delta>1$ has a dominating set of size at most $n \frac{1+\ln (\delta+1)}{\delta+1}$

Proof:

- We construct a random sample space by choosing for each vertex if it is contained or not in a set X with probability $p=\frac{\ln (\delta+1)}{\delta+1}$ (X is a d.s. under construction)
- Define Y_{X} the set that contains vertices which
- are not contained in X and
- are not neighbours of any vertex in X Clearly, $X \cup Y_{X}$ is a dominating set.
- By Linearity of Expectation:
$E\left[\left|X \cup Y_{X}\right|\right]=E[|X|]+E\left[\left|Y_{X}\right|\right](X, Y$ disjoint $)$
- $|X| \sim B(n, p) \Rightarrow E[|X|]=n p=n \frac{\ln (\delta+1)}{\delta+1}$

Proof of theorem 2

■ $\operatorname{Pr}\left[u \in Y_{X}\right]=\operatorname{Pr}[u \notin X \cap \forall v \in X:(u, v)$ not an edge $]$

$$
\begin{gathered}
\Rightarrow \operatorname{Pr}\left[u \in Y_{X}\right]=(1-p) \cdot(1-p)^{d(u)}=(1-p)^{1+d(u)} \\
\leq(1-p)^{1+\delta} \leq e^{-p(1+\delta)}=e^{-\frac{\ln (\delta+1)}{\delta+1}(1+\delta)}=e^{-\ln (\delta+1)}=\frac{1}{\delta+1}
\end{gathered}
$$

- Thus, $E\left[Y_{X}\right] \leq n \frac{1}{\delta+1}$
- $E\left[\left|X \cup Y_{X}\right|\right]=E[|X|]+E\left[\left|Y_{X}\right|\right] \leq n \frac{\ln (\delta+1)}{\delta+1}+n \frac{1}{\delta+1}$
- Thus, there must exist a d.s. of size $\leq n \frac{1+\ln (\delta+1)}{\delta+1}$

The Deletion Method
 Basic idea

(1) Prove the existence of a structure that:

- doesn't have the desired property but - it is "very similar" to have the desired property.
(2) Modify the random structure (e.g. delete problematic parts of it) in order to have a structure with the desired property.

The Deletion Method

Example - An improved lower bound for Ramsey numbers

Definition 3

The diagonal ramsey number $R(k, k)$ is the smallest integer n such that in any two-coloring of the edges of the complete graph on n vertices K_{n} there is a monochromatic K_{k}.

The Deletion Method

Example - An improved lower bound for Ramsey numbers

Theorem 3

For any integer $n: R(k, k)>n-\binom{n}{k} 2^{1-\binom{k}{2}}$
Proof:
■ Construct a probability sample space of edge coloring by two-coloring at random, equiprobably (for the two colors) and independently the edges of K_{n}.
■ Let S be any fixed set of k vertices.

- We define the r.v. $X=\sum_{S,|S|=k} X_{S}$ that corresponds to the number of monochromatic sets and X_{S} :

$$
X_{S}= \begin{cases}1 & \mathrm{~S} \text { is monochromatic } \\ 0 & \text { otherwise }\end{cases}
$$

■ $E\left[X_{S}\right]=\operatorname{Pr}[\mathrm{S}$ is monochromatic $]=2\left(\frac{1}{2}\right)^{\binom{k}{2}}=2^{1-\binom{k}{2}}$

Proof of theorem 3

- By linearity of expectation:
$E[X]=E\left[\sum_{S,|S|=k} X_{S}\right]=\sum_{S} E\left[X_{S}\right]=\binom{n}{k} 2^{1-\binom{k}{2}}$
- \exists point: $X \leq E[X] \Rightarrow \exists$ edge two-coloring of K_{n} of at most $\binom{n}{k} 2^{1-\binom{k}{2}}$ monochromatic sets of size k.
- If we remove at most 1 vertex from any set S we have a graph of at least $n-\binom{n}{k} 2^{1-\binom{k}{2}}$ vertices with no monochromatic subsets of size k.
- Thus, $R(k, k)>n-\binom{n}{k} 2^{1-\binom{k}{2}}$

Example 2 - Independent set in arbitrary graphs

Definition 4 (Independent Set)

An independent set is a set of vertices such that for every two vertices in it, there is no edge connecting them.

Theorem 4 (Turán, 1941)
Consider a graph $G=(V, E)$ of n vertices and $\frac{n d}{2}$ edges. Then, G contains an independent set of size at least $\frac{n}{2 d}$.

Proof of theorem 4

■ We construct a random sample space by choosing for each vertex if it is contained or not in a set X (with probability p it is contained), independently for each vertex. X is an i.s. under construction.

■ Let Y be the number of edges between vertices of X.

- We can denote $Y=\sum_{e} Y_{e}$ where

$$
Y_{e}= \begin{cases}1 & \mathrm{e} \text { is an edge between vertices of } \mathrm{X} \\ 0 & \text { otherwise }\end{cases}
$$

- $E\left[Y_{e}\right]=p^{2}$
- Thus, $E[Y]=\sum_{e} E\left[Y_{e}\right]=|E| p^{2}=\frac{n d}{2} p^{2}$
- $|X| \sim B(n, p) \Rightarrow E[|X|]=n p$
- By Linearity of Expectation

$$
E[|X|-|Y|]=E[|X|]-E[|Y|]=n p-\frac{n d}{2} p^{2}
$$

Proof of theorem 4

- An independent set has the maximum value of $|X|-|Y|$.
- The value $p=\frac{1}{d}$ maximizes the expectation of the difference $|X|-|Y|$ which becomes:

$$
E[|X|-|Y|]=\frac{n}{2 d}
$$

- \exists point such that $|X|-|Y| \geq E[|X|-|Y|]=\frac{n}{2 d}$
- \exists set of vertices such that $|X| \geq|Y|+\frac{n}{2 d}$
- \exists set of vertices such that $\#$ vertices \geq \#edges $+\frac{n}{2 d}$

■ We can modify X by removing one vertex from each edge inside X. We obtain a set with at least $\frac{n}{2 d}$ vertices and no edges, which is clearly independent.

- \exists independent set of size at least, $\frac{n}{2 d}$.

