
The Probabilistic Method - Probabilistic Techniques

Lecture 3: “Linearity of Expectation”

Sotiris Nikoletseas
Professor

Computer Engineering and Informatics Department
2023 - 2024

Sotiris Nikoletseas, Professor The Probabilistic Method 1 / 18



Summary of previous lecture

Common, underlying concept of all techniques:
“Non-constructive proof of existence of combinatorial

structures that have certain desired properties.”

Method of “positive probability”:
Construct (by using abstract random experiments) an
appropriate probability sample space of combinatorial structures
(points ↔ structures).
Prove that the probability of the desired property in this space is
positive (i.e. non-zero). ⇒ There is at least one combinatorial
structure (since there is at least one point) with the desired
property.
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Summary of this lecture

i. Non-existence proofs using the Markov Inequality

ii. Proofs of existence using the Linearity of Expectation
method
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(I) Markov Inequality

Theorem 1

Let X be a non-negative random variable. Then:

∀t > 0 : Pr{X ≥ t} ≤ E[X]

t

Proof :

E[X] =
∑
x

xPr{X = x} ≥
∑
x≥t

xPr{X = x}

≥
∑
x≥t

tPr{X = x} = t
∑
x≥t

Pr{X = x} = t · Pr{X ≥ t}

⇒ E[X] ≥ t · Pr{X ≥ t}

⇒ Pr{X ≥ t} ≤ E[X]

t
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(I) Markov Inequality Application

It is actually a (weak) concentration inequality:

Pr
{
X ≥ 2 · E[X]

}
≤ 1

2

Pr
{
X ≥ 3 · E[X]

}
≤ 1

3

...

Pr
{
X ≥ k · E[X]

}
≤ 1

k
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A Basic Theorem

Theorem 2

Let X be a non-negative integer random variable. Then

if E[X] → 0 then Pr{X = 0} → 1

Proof :
Using Markov’s inequality for t=1 we have that:

Pr{X ≥ 1} ≤ E[X]

If E[X] → 0 then Pr{X = 0} → 1.
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Non-Existence Proof
Methodology

1. Construct (by using abstract random experiments) an
appropriate probability sample space of combinatorial
structures.

2. Define the random variable X that corresponds to the
number of structures with the desired property.

3. a. Express X as a sum of indicator variables
X = X1 +X2 + · · ·Xn where

Xi =

{
1 the desired property holds
0 otherwise

b. Calculate E[X] using linearity of expectation.
c. Prove that E[X] → 0 when X → ∞

4. Conclude by using theorem 2 that w.h.p. the r.v. X is
limited to 0. Hence, almost certainly there is no structure
with the desired property.
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Random Graph

Definition 1 (Random Graph)

A random graph is obtained by starting with a set of n isolated
vertices and adding successive edges between them at random.
In the Gn,p model every possible edge occurs independently with
probability 0 < p < 1.
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Example - Dominating Set

Definition 2 (Dominating Set)

Given an undirected graph G = (V,E), a dominating set is a
subset S ⊆ V of its nodes such that for all nodes v ∈ V , either
v ∈ S or a neighbor u of v is in S.

Remark: The problem of finding a minimum dominating set is
NP-hard. We will here address it by employing randomness.

We will show that smaller than logarithmic-size dominating sets
do not exist (w.h.p.) in dense random graphs.

Theorem 3

For any k < lnn : Pr{∃d.s. of size k in Gn, 1
2
} → 0
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Proof of theorem 3 (1/2)

1. Let G be a graph generated using Gn, 1
2
and S be any fixed

set of k vertices of G.
2. Define r.v. X that corresponds to the number of

dominating sets of size k.
3. a. X =

∑
S,|S|=k XS where XS are indicator variables

XS =

{
1 S is d.s.
0 otherwise

b. Calculate E[X]: Using linearity of expectation:

E[X] = E

 ∑
S,|S|=k

XS

 =
∑

S,|S|=k

E[XS ]

Calculate expectation of indicator variable XS :

E[XS ] = 1 · Pr{S is d.s.}+ 0 · Pr{S is not d.s.}
⇒ E[XS ] = Pr{S is d.s.}
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Proof of theorem 3 (2/2)

assume a vertex v ̸∈ d.s.: Pr{∄(v, u) : u ∈ S} = ( 1
2
)k

⇒ Pr{∃(v, u) : u ∈ S} = 1− ( 1
2
)k

⇒ Pr{∀v out of S, ∃(v, u) : u ∈ S} = (1− 1
2k

)n−k

⇒ E[XS ] = Pr{S is d.s.} = (1− 1
2k

)n−k

So,

E[X] =
∑

S,|S|=k

E[XS ] =

(
n

k

)(
1− 1

2k

)n−k

c. It holds that
(
n
k

)
≤ nk and (1− 1

2k
)n−k < e−

n−k

2k

⇒ E[X] ≤ nke−
n−k
2k ≤ e

k

2k

(
ek lnn− n

2k

)
If k lnn− n

2k
→ −∞ then E[X] → 0,

So, if k < lnn ⇒ E[X] → 0

4. Using theorem 2 we prove that almost certainly there are
no dominating sets of size k < lnn
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(II) Linearity of Expectation Method
Basic methodology(1/2)

1. Construct (by using abstract random experiments) an
appropriate probability sample space of combinatorial
structures.

2. Define a random variable X that corresponds to the
desired quantitative characteristics (e.g. the number or the
size of the structures).

3. Express X as a sum of random indicator variables:
X = X1 +X2 + · · ·Xn where

Xi =

{
1 the desired property holds
0 otherwise

4. Calculate E[Xi] = Pr{Xi = 1}.
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(II) Linearity of Expectation Method
Basic methodology(2/2)

5. Linearity of Expectation:

E[X] = E

(∑
i

Xi

)
=
∑
i

E[Xi]

even when Xi are dependent.

6. Obvious observation:
a random variable gets at least one value ≤ E[X] and at
least one value ≥ E[X].
Proof by contradiction:

µ = E[X] =
∑
x

x · f(x) >
∑
x

µ · f(x) = µ
∑
x

f(x) = µ

⇒ ∃ at least one point (a structure) in the sample space for
which X ≥ E[X] and at least one point (a structure) for
which X ≤ E[X]
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(II) Linearity of Expectation Method
method’s capabilities and limitations

estimation of expectation suffices.
technically easy (indicator random variable ⇔ probability
of property)
linearity does not require stochastic independence (generic
method)

is associated with first moment Markov inequality:

Pr{X ≥ t} ≤ E[X]

t
⇔ Pr{X ≥ t · E[X]} ≤ 1

t

for more powerful results:
inequalities with higher moments e.g. Chebyshev’s
inequality :

Pr {|X − µ| ≥ λσ} ≤ 1

λ2

technical difficulties: linearity of variance generally requires
stochastic independence (less generic methods)
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Example - Tournament with many Hamiltonian Paths
(1/2)

Theorem 4 (Szele, 1943)

For every positive integer n, there exists a tournament on n
vertices with at least n! · 2−(n−1) Hamiltonian paths.

Proof :

1. We construct a probability sample space with points
corresponding to random tournaments by choosing the
direction of each edge at random, equiprobably for the two
directions and independently for every edge.

2. We define the r.v. X that corresponds to the number of
Hamiltonian Paths.

3. Let σ be a permutation of the vertices of the tournament.
We have that X =

∑
σ Xσ where:

Xσ =

{
1 σ leads to a Hamiltonian Path
0 otherwise
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Example - Tournament with many Hamiltonian Paths
(2/2)

4. A permutation σ leads to a Hamiltonian Path only if all
edges have the same direction.

E[Xσ] = Pr{Xσ = 1} =

(
1

2

)n−1

= 2−(n−1)

5. By linearity of Expectation:

E[X] = E

(∑
σ

Xσ

)
=
∑
σ

E[Xσ]

So, we have that:

E[X] = n! · 2−(n−1)

6. Thus, there must exist at least one tournament on n
vertices which has at least n! · 2−(n−1) Hamiltonian paths.
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Example - Bipartite Subgraphs

Definition 3 (Bipartite Graph)

A bipartite graph is a graph whose vertices can be divided into
two disjoint sets V1 and V2 such that every edge connects a
vertex in V1 to one in V2.

Theorem 5

Every graph G=(V,E) has a bipartite subgraph with at least |E|
2

edges.
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Proof of theorem 5

1. We construct a random sample space by choosing for every
vertex in which set (V1 or V2) it belongs at random,
equiprobably for the two sets and independently for each
vertex. Thus, the points are random “bipartitions” of V .

2. We define the r.v. X that corresponds to the number of
“crossing” edges (joining vertices in different parts).

3. Let g be an edge. We have that X =
∑

g∈E(G)Xg where:

Xg =

{
1 g is crossing
0 otherwise

4. E[Xg] = Pr{Xg = 1} = 1
2 · 1

2 + 1
2 · 1

2 = 2 · 1
4 = 1

2
5. By linearity of Expectation

E[X] = E
(∑

g∈E(G)Xg

)
=
∑

g∈E(G)E[Xg] = |E| · 1
2

6. Thus, there must exist a bipartite subgraph which has at
least |E|

2 edges.
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