

Let the distribution of the population and θ an unknown parameter which we want to estimate via a sample

- Estimator: Any function with which we want to estimate the value of θ :
 - dependent to the sample
 - independent to θ

• Criteria to evaluate estimators

- Unbiased: $E\hat{\theta} = \theta$ (validity)
- Effectiveness: $\text{Var} \hat{\theta}_1 < \text{Var} \hat{\theta}_2$ (if $\text{Var} \hat{\theta}_1 < \text{Var} \hat{\theta}_2 \Rightarrow \hat{\theta}_1$ more effective) (reliability)
- Consistency: If $\hat{\theta}_n \xrightarrow{P} \theta$ while $n \rightarrow \infty$

↳ If $\hat{\theta}_n$ unbiased and $\lim_{n \rightarrow \infty} \text{Var} \hat{\theta}_n \rightarrow 0 \Rightarrow \hat{\theta}_n$ consistent

• Methods getting estimators

- Moments method
- Maximum likelihood method
- Least Squares Method \rightarrow Regression

Exercise 1

Wednesday, December 13, 2023 12:44 PM

Let T_1 and T_2 unbiased estimators and θ an unknown parameter. Let also the estimator $T = \lambda T_1 + (1 - \lambda)T_2$, where λ is constant. Is T unbiased?

Unbiased estimator $T \Rightarrow ET = \theta$

$ET_1 = \theta$ $ET = E[\lambda T_1 + (1 - \lambda)T_2] = \overbrace{\lambda ET_1 + (1 - \lambda)ET_2}^{\text{linearity}} =$

$ET_2 = \theta$ $= \lambda\theta + (1 - \lambda)\theta \Rightarrow ET = \theta \Rightarrow$

$\Rightarrow T$ unbiased

Exercise 2

Wednesday, December 13, 2023 12:44 PM

Let a random sample X_1, X_2, \dots, X_n drawn from a distribution with an unknown parameter θ , and let the estimator: $T = \sum_{i=1}^n \lambda_i X_i$, where λ_i constant ($i = 1, 2, \dots, n$). What must hold for the constants λ_i so that T be unbiased for the unknown parameter θ ;

$$E\bar{T} = \theta \Rightarrow E\left[\sum_{i=1}^n \lambda_i X_i \right] = \theta \xrightarrow{\text{linearity}} \sum_{i=1}^n \lambda_i E X_i = \theta \Rightarrow \sum_{i=1}^n \lambda_i \mu = \theta \Rightarrow$$

$$\Rightarrow \mu \sum_{i=1}^n \lambda_i = \theta \xrightarrow{\boxed{\sum_{i=1}^n \lambda_i = \frac{\theta}{\mu}}}$$

Exercise 3

Wednesday, December 13, 2023 12:44 PM

Let X_1, X_2, \dots, X_n random sample of a population with distribution for which it holds $\mu = \theta$ and $\sigma^2 = 2\theta$.

Show that the estimators $T_1 = \frac{X_1 + X_2}{2}$, $T_2 = \frac{3X_1 + 2X_2}{5}$ are unbiased for θ and find the most effective.

$$E T_1 = E \left[\frac{X_1 + X_2}{2} \right] = \frac{E X_1 + E X_2}{2} = \frac{\theta + \theta}{2} = \theta \Rightarrow \text{unbiased}$$

$$E T_2 = E \left[\frac{3X_1 + 2X_2}{5} \right] = \frac{3 E X_1 + 2 E X_2}{5} = \frac{3\theta + 2\theta}{5} = \theta \Rightarrow \text{unbiased}$$

$$\text{Var} T_1 = \text{Var} \left[\frac{X_1 + X_2}{2} \right] = \frac{1}{2^2} (\text{Var} X_1 + \text{Var} X_2) = \frac{1}{4} (2\theta + 2\theta) = \theta$$

$$\text{Var} T_2 = \text{Var} \left[\frac{3X_1 + 2X_2}{5} \right] = \frac{1}{5^2} (3^2 \text{Var} X_1 + 2^2 \text{Var} X_2) = \frac{1}{25} (9 \cdot 2\theta + 4 \cdot 2\theta) \Rightarrow$$

$$\Rightarrow \text{Var} T_2 = \frac{26}{25} \theta > \theta = \text{Var} T_1 \Rightarrow T_1 \text{ more effective}$$

Exercise 4

Wednesday, December 13, 2023 4:28 PM

Let X_1, X_2, \dots, X_v and random sample and $p = P(X \leq a)$. Show that the estimator $T(X_1, X_2, \dots, X_v) = \frac{1}{v} [number of X_k, k = 1, 2, \dots, v \text{ so that } X_k \leq a]$ is unbiased.

Let X_k r.v. so that $EY_k = p$
 $Y_k = \begin{cases} 1, & X_k \leq a \\ 0, & X_k > a \end{cases}$ $P(X_k = 1) = p \Rightarrow P(Y_k = 0) = 1 - p$

Y r.v. so that $Y = \sum_{i=1}^v Y_i \rightarrow$ indicates how many $X_i \leq a$

Thus, $T(X_1, \dots, X_v) = \frac{1}{v} Y \Rightarrow ET(X_1, \dots, X_v) = E\left[\frac{Y}{v}\right] = \frac{EY}{v} =$
 $= \frac{1}{v} E\left[\sum_{i=1}^v Y_i\right] = \frac{1}{v} \sum_{i=1}^v EY_i = \frac{1}{v} \sum_{i=1}^v p = \frac{1}{v} v \cdot p \Rightarrow ET(X_1, \dots, X_v) = p \Rightarrow$
 $\Rightarrow T(X_1, \dots, X_v)$ unbiased

Let X_1, X_2, \dots, X_n random sample from a distribution with p.d.f. $f(x) = \theta x^{\theta-1}$, $0 < x < 1$, $\theta > 0$. Find an estimator for θ using:

(a) the moments method,

(β) with the maximum likelihood estimator method

Exemples pour l'application de la théorie de la communication dans le contexte de l'enseignement et de l'apprentissage.

a) Moments method

1st step: There is only one unknown parameter, so we will use the 1st moment, i.e. the mean value:

$$EX = \int_{-\infty}^{\infty} x f(x) dx = \int_0^{\infty} x \theta x^{\theta-1} dx = \theta \int_0^{\infty} x^{\theta} dx = \theta \left[\frac{x^{\theta+1}}{\theta+1} \right]_0^{\infty} = \theta \left(\frac{\infty^{\theta+1}}{\theta+1} - \frac{0^{\theta+1}}{\theta+1} \right) = \theta \left(\frac{\infty}{\theta+1} \right) = \infty$$

2nd step : Let $\bar{X} = \bar{\bar{X}} \Rightarrow \frac{\theta}{\theta+1} = \bar{\bar{X}} \Rightarrow$

$$\Rightarrow \Theta = \theta \bar{x} + \bar{x} \Rightarrow \theta(1 - \bar{x}) = \bar{x} \Rightarrow \Theta = \frac{\bar{x}}{1 - \bar{x}}$$

B) Maximum Likelihood Estimator Method

$$L(\theta) = f(x_1, x_2, \dots, x_n; \theta) = f(x_1; \theta) \cdot f(x_2; \theta) \cdot \dots \cdot f(x_n; \theta) \Rightarrow$$

$$\begin{aligned}
 \log L(\theta) &= \log [f(x_1; \theta) \cdot f(x_2; \theta) \cdots \cdot f(x_n; \theta)] = \sum_{i=1}^n \log f(x_i; \theta) = \\
 &= \sum_{i=1}^n \log (\theta x_i^{\theta-1}) = \sum_{i=1}^n (\log \theta + \log x_i^{\theta-1}) = \sum_{i=1}^n (\log \theta + (\theta-1) \log x_i) = \\
 &= \sum_{i=1}^n \log \theta + \sum_{i=1}^n (\theta-1) \log x_i = n \log \theta + (\theta-1) \sum_{i=1}^n \log x_i \Rightarrow
 \end{aligned}$$

$$\frac{d \log L(\theta)}{d \theta} = \frac{d \left(n \log \theta + (\theta-1) \sum_{i=1}^n \log x_i \right)}{d \theta} = \frac{n}{\theta} + \sum_{i=1}^n \log x_i$$

$$\frac{d \log L(\theta)}{d\theta} = 0 \Rightarrow \hat{\theta} + \sum_{i=1}^n \log x_i = 0 \Rightarrow \hat{\theta} = -\frac{\sum_{i=1}^n \log x_i}{n} \quad (1)$$

$$\frac{d \log L(\theta)}{d \theta} \Big|_{\theta=\hat{\theta}} = 0 \Rightarrow \frac{n}{\hat{\theta}} + \sum_{i=1}^n \log x_i = 0 \Rightarrow \hat{\theta} = -\frac{n}{\sum_{i=1}^n \log x_i} \quad (1)$$

Θετική και διαγραμμική οτις $\frac{d^2 \log L(\theta)}{d \theta^2} < 0$

$$\frac{d^2 \log L(\theta)}{d \theta^2} = \frac{d \left(\frac{n}{\theta} + \sum_{i=1}^n \log x_i \right)}{d \theta} = -\frac{n}{\theta^2} < 0$$

Thus, $L(\theta)$ maximizes when

$$\hat{\theta} = -\frac{n}{\sum_{i=1}^n \log x_i}$$