
ΝΑΝΟΗΛΕΚΤΡΟΝΙΚΗ & ΚΒΑΝΤΙΚΕΣ ΠΥΛΕΣ
8η Διάλεξη

Βιβλιογραφία:

1. Foundations of Quantum Programming, Mingsheng Ying (1st edition, Elsevier

2016).

2. The Quipper Language,

 http://www.mathstat.dal.ca/~selinger/quipper/

This presentation is based on the contributed article: Programming the Quantum
Future, Benoît Valiron, Neil J. Ross, Peter Selinger, D. Scott Alexander, Jonathan M. Smith,
Communications of the ACM, Vol. 58 No. 8, Pages 52-61, DOI: 10.1145/2699415.

http://cacm.acm.org/magazines/2015/8/189851-programming-the-quantum-future/abstract

1 ΝΑΝΟΗΛΕΚΤΡΟΝΙΚΗ & ΚΒΑΝΤΙΚΕΣ ΠΥΛΕΣ- 2017 Χ. Χρηστίδης

http://www.mathstat.dal.ca/~selinger/quipper/
http://www.mathstat.dal.ca/~selinger/quipper/
http://www.mathstat.dal.ca/~selinger/quipper/
http://www.mathstat.dal.ca/~selinger/quipper/
http://www.mathstat.dal.ca/~selinger/quipper/
http://www.mathstat.dal.ca/~selinger/quipper/
http://www.mathstat.dal.ca/~selinger/quipper/
http://www.mathstat.dal.ca/~selinger/quipper/
http://www.mathstat.dal.ca/~selinger/quipper/
http://www.mathstat.dal.ca/~selinger/quipper/
http://cacm.acm.org/magazines/2015/8/189851-programming-the-quantum-future/abstract
http://cacm.acm.org/magazines/2015/8/189851-programming-the-quantum-future/abstract
http://cacm.acm.org/magazines/2015/8/189851-programming-the-quantum-future/abstract
http://cacm.acm.org/magazines/2015/8/189851-programming-the-quantum-future/abstract
http://cacm.acm.org/magazines/2015/8/189851-programming-the-quantum-future/abstract
http://cacm.acm.org/magazines/2015/8/189851-programming-the-quantum-future/abstract
http://cacm.acm.org/magazines/2015/8/189851-programming-the-quantum-future/abstract
http://cacm.acm.org/magazines/2015/8/189851-programming-the-quantum-future/abstract
http://cacm.acm.org/magazines/2015/8/189851-programming-the-quantum-future/abstract
http://cacm.acm.org/magazines/2015/8/189851-programming-the-quantum-future/abstract
http://cacm.acm.org/magazines/2015/8/189851-programming-the-quantum-future/abstract
http://cacm.acm.org/magazines/2015/8/189851-programming-the-quantum-future/abstract
http://cacm.acm.org/magazines/2015/8/189851-programming-the-quantum-future/abstract
http://cacm.acm.org/magazines/2015/8/189851-programming-the-quantum-future/abstract
http://cacm.acm.org/magazines/2015/8/189851-programming-the-quantum-future/abstract
http://cacm.acm.org/magazines/2015/8/189851-programming-the-quantum-future/abstract
http://cacm.acm.org/magazines/2015/8/189851-programming-the-quantum-future/abstract
http://cacm.acm.org/magazines/2015/8/189851-programming-the-quantum-future/abstract
http://cacm.acm.org/magazines/2015/8/189851-programming-the-quantum-future/abstract
http://cacm.acm.org/magazines/2015/8/189851-programming-the-quantum-future/abstract
http://cacm.acm.org/magazines/2015/8/189851-programming-the-quantum-future/abstract

The Quipper language is a programming framework
for quantum computation

ΝΑΝΟΗΛΕΚΤΡΟΝΙΚΗ & ΚΒΑΝΤΙΚΕΣ ΠΥΛΕΣ- 2017 Χ. Χρηστίδης 2

• Quipper is an embedded, scalable functional programming
language for quantum computing.

• The Quipper system is a compiler rather than an
interpreter; it translates a complete program all in one go
rather than executing statements one by one.

• The output of the compiler consists of quantum circuits:
networks of interconnected, reversible logic gates.

• A circuit can take the form of a wiring diagram, but it also
constitutes a sequence of instructions ready to be executed
by suitable quantum hardware or a simulator.

Quipper is implemented as an Embedded Domain-Specific
Language (EDSL) inside the host language Haskell

ΝΑΝΟΗΛΕΚΤΡΟΝΙΚΗ & ΚΒΑΝΤΙΚΕΣ ΠΥΛΕΣ- 2017 Χ. Χρηστίδης 3

Its main features are:
• Hardware independence. Quipper’s paradigm is to view quantum

computation at the level of logical circuits.
• Extended circuit model. The initialization and termination of qubits is

explicitly tracked for the purpose of ancilla management.
• Hierarchical circuits. Quipper features subroutines at the circuit level,

permitting a compact representation of circuits in memory.
• Two runtimes. The 1st runtime is “circuit generation,” and the 2nd runtime

is “circuit execution.”
• Parameter/input distinction. Quipper has two notions of classical data:

“parameters,” which must be known at circuit-generation time, and
“inputs,” which may be known only at circuit-execution time.

• Automatic generation of quantum oracles. Quantum algorithms require
some nontrivial classical computation to be made reversible and then lifted
to quantum operation. Quipper has facilities for turning an ordinary Haskell
program into a reversible circuit. This is implemented using a “Template
Haskell” feature.

Quipper Feature Highlights with code examples

ΝΑΝΟΗΛΕΚΤΡΟΝΙΚΗ & ΚΒΑΝΤΙΚΕΣ ΠΥΛΕΣ- 2017 Χ. Χρηστίδης 4

1) Procedural paradigm. Qubits are held in variables, and gates are
applied one at a time:

• The type of a circuit-producing function is distinguished by the
keyword Circ after the arrow.

• The function mycirc inputs a and b of type Qubit and outputs a pair
of qubits while generating a circuit.

Quipper Feature Highlights with code examples

ΝΑΝΟΗΛΕΚΤΡΟΝΙΚΗ & ΚΒΑΝΤΙΚΕΣ ΠΥΛΕΣ- 2017 Χ. Χρηστίδης 5

2) Block structure. Functions generating circuits can be reused as

 subroutines to generate larger circuits:

• Operators such as with _ controls, can take an entire block of code as
an argument.

• “do” introduces an indented block of code.

• “$” before “do” is an idiosyncrasy of Haskell syntax.

Quipper Feature Highlights with code examples

ΝΑΝΟΗΛΕΚΤΡΟΝΙΚΗ & ΚΒΑΝΤΙΚΕΣ ΠΥΛΕΣ- 2017 Χ. Χρηστίδης 6

3) Circuit operators. Quipper can treat circuits as data and provide high-

 level operators for manipulating whole circuits:

• the operator reverse_ simple reverses a circuit.

Quipper Feature Highlights with code examples

ΝΑΝΟΗΛΕΚΤΡΟΝΙΚΗ & ΚΒΑΝΤΙΚΕΣ ΠΥΛΕΣ- 2017 Χ. Χρηστίδης 7

4) Circuit transformers. Provides user-programmable “circuit transformers” as
 a mechanism for modifying a circuit on a gate-by-gate basis:

• the timestep circuit in previous Figure can be decomposed into binary gates

using the “Binary timestep” transformer.

Quipper Feature Highlights with code examples

ΝΑΝΟΗΛΕΚΤΡΟΝΙΚΗ & ΚΒΑΝΤΙΚΕΣ ΠΥΛΕΣ- 2017 Χ. Χρηστίδης 8

5) Automated functional-to-reversible translation. Provides a special
keyword build_circuit for automatically synthesizing a circuit from an
ordinary functional program:

• the type Bool is used for Boolean “parameters,” which must be
known at circuit-generation time,

• the type Bit is used for Boolean “inputs,” which may be known only at
circuit-execution time.

Quipper Feature Highlights with code examples

ΝΑΝΟΗΛΕΚΤΡΟΝΙΚΗ & ΚΒΑΝΤΙΚΕΣ ΠΥΛΕΣ- 2017 Χ. Χρηστίδης 9

5) Automated functional-to-reversible translation. The resulting
circuit from previous Figure can be made reversible with the
operator classical _to _ reversible:

Experience with Quipper

ΝΑΝΟΗΛΕΚΤΡΟΝΙΚΗ & ΚΒΑΝΤΙΚΕΣ ΠΥΛΕΣ- 2017 Χ. Χρηστίδης 10

Quipper has been used to implement seven nontrivial quantum algorithms, covering a
broad spectrum of quantum techniques (Quantum Fourier Transform, phase
estimation, Trotterization, amplitude amplification):

• Each of these algorithms solves a problem believed to be classically hard.

• Each algorithm gives an asymptotic quantum speedup, but not necessarily an exponential one.

• All of these algorithms can be run, in the sense that we can print the corresponding circuits for small
parameters and perform automated gate counts for circuits of less tractable sizes.

Example subroutines written in Quipper

ΝΑΝΟΗΛΕΚΤΡΟΝΙΚΗ & ΚΒΑΝΤΙΚΕΣ ΠΥΛΕΣ- 2017 Χ. Χρηστίδης 11

Procedural example. This circuit “implements” the time step for a quantum walk in the
Binary Welded Tree algorithm (by “implementing” an algorithm, we mean realizing it
as a computer program):
1) Inputs a list of pairs of qubits

 (ai, bi), and a single qubit r.

2) First generates an ancilla

 qubit in state |0〉.

3) Applies the two qubit gate

 W to each of the pairs (ai, bi).

4) It is followed by a series of

 doubly controlled NOT-gates

 acting on the ancilla.

5) After a middle gate eiZt, it

 applies all the gates in

 reverse order.

6) The ancilla ends up in the state

 |0〉 and is no longer needed.

Example subroutines written in Quipper

ΝΑΝΟΗΛΕΚΤΡΟΝΙΚΗ & ΚΒΑΝΤΙΚΕΣ ΠΥΛΕΣ- 2017 Χ. Χρηστίδης 12

Procedural example. In the Binary Welded Tree algorithm, the Quipper code is:

Example subroutines written in Quipper

ΝΑΝΟΗΛΕΚΤΡΟΝΙΚΗ & ΚΒΑΝΤΙΚΕΣ ΠΥΛΕΣ- 2017 Χ. Χρηστίδης 13

Procedural example. The circuit generated by the code in previous
Figure, with three qubit pairs:

Example subroutines written in Quipper

ΝΑΝΟΗΛΕΚΤΡΟΝΙΚΗ & ΚΒΑΝΤΙΚΕΣ ΠΥΛΕΣ- 2017 Χ. Χρηστίδης 14

Procedural example. The circuit generated by the code in previous
Figure, with 30 qubit pairs:

Example subroutines written in Quipper

ΝΑΝΟΗΛΕΚΤΡΟΝΙΚΗ & ΚΒΑΝΤΙΚΕΣ ΠΥΛΕΣ- 2017 Χ. Χρηστίδης 15

A functional-to-reversible translation. Among other things, this algorithm contains an oracle
calculating a vector r of complex numbers. The calcRweights function is the core of the oracle:

Contains:

1) Algebraic and

transcendental

operations on

real and complex

numbers (such as

sin, cos, sinc, and

mkPolar).

2) Subroutines

(such as edgetoxy

and itoxy) not

shown in Figure.

3) This Function is

readily processed

using Quipper’s

automated

circuit-generation

facilities.

Example subroutines written in Quipper

ΝΑΝΟΗΛΕΚΤΡΟΝΙΚΗ & ΚΒΑΝΤΙΚΕΣ ΠΥΛΕΣ- 2017 Χ. Χρηστίδης 16

A functional-to-reversible translation. Algebraic and transcendental functions are mapped
automatically to quantum versions provided by an existing Quipper library for fixed-point real
and complex arithmetic. The result of calcRweight function is the rather large circuit:

This example is from the Quantum Linear Systems algorithm published by Harrow, A.W.,
Hassidim, A., and Lloyd, S. Quantum algorithm for solving linear systems of equations. Physical
Review Letters 103, 15 (Oct. 2009), 150502.

The design of Quipper

ΝΑΝΟΗΛΕΚΤΡΟΝΙΚΗ & ΚΒΑΝΤΙΚΕΣ ΠΥΛΕΣ- 2017 Χ. Χρηστίδης 17

1. Quipper is an example of a language suited to a quantum
coprocessor model.

2. As an embedded language, Quipper is confined to using Haskell’s
type system, providing many important safety guarantees.

3. However, due to Haskell’s lack of support for linear types, some
safety properties (such as the absence of attempts to clone quantum
information) are not adequately supported.

Note that the absence of cloning is already guaranteed by the physics, regardless of
what the programming language does.

However, one could similarly say the absence of an illegal memory access is
guaranteed by a classical processor’s page-fault mechanism. It is nevertheless
desirable to have a programming language that can guarantee prior to running the
program that the compiled program will never attempt to access an illegal
memory location or, in the case of a quantum programming language, will not
attempt to apply a controlled-not gate to qubits n and m, where n = m.

