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Βιβλιογραφία: 
 
1. Foundations of Quantum Programming, Mingsheng Ying (1st edition, Elsevier 

2016).  

 

2. The Quipper Language, 

       http://www.mathstat.dal.ca/~selinger/quipper/ 

 

This presentation is based on the contributed article: Programming the Quantum 
Future, Benoît Valiron, Neil J. Ross, Peter Selinger, D. Scott Alexander, Jonathan M. Smith, 
Communications of the ACM, Vol. 58 No. 8, Pages 52-61, DOI: 10.1145/2699415. 

http://cacm.acm.org/magazines/2015/8/189851-programming-the-quantum-future/abstract 
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The Quipper language is a programming framework 
for quantum computation 
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• Quipper is an embedded, scalable functional programming 
language for quantum computing. 

• The Quipper system is a compiler rather than an 
interpreter; it translates a complete program all in one go 
rather than executing statements one by one.  

• The output of the compiler consists of quantum circuits: 
networks of interconnected, reversible logic gates.  

• A circuit can take the form of a wiring diagram, but it also 
constitutes a sequence of instructions ready to be executed 
by suitable quantum hardware or a simulator. 



Quipper is implemented as an Embedded Domain-Specific 
Language (EDSL) inside the host language Haskell 
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Its main features are: 
• Hardware independence. Quipper’s paradigm is to view quantum 

computation at the level of logical circuits. 
• Extended circuit model. The initialization and termination of qubits is 

explicitly tracked for the purpose of ancilla management. 
• Hierarchical circuits. Quipper features subroutines at the circuit level, 

permitting a compact representation of circuits in memory. 
• Two runtimes. The 1st runtime is “circuit generation,” and the 2nd runtime 

is “circuit execution.” 
• Parameter/input distinction. Quipper has two notions of classical data: 

“parameters,” which must be known at circuit-generation time, and 
“inputs,” which may be known only at circuit-execution time. 

• Automatic generation of quantum oracles. Quantum algorithms require 
some nontrivial classical computation to be made reversible and then lifted 
to quantum operation. Quipper has facilities for turning an ordinary Haskell 
program into a reversible circuit. This is implemented using a “Template 
Haskell” feature. 



Quipper Feature Highlights with code examples 

ΝΑΝΟΗΛΕΚΤΡΟΝΙΚΗ & ΚΒΑΝΤΙΚΕΣ ΠΥΛΕΣ- 2017 Χ. Χρηστίδης 4 

1) Procedural paradigm. Qubits are held in variables, and gates are 
applied one at a time: 

 

 

 

 

 

 

• The type of a circuit-producing function is distinguished by the 
keyword Circ after the arrow. 

• The function mycirc inputs a and b of type Qubit and outputs a pair 
of qubits while generating a circuit. 

 

 



Quipper Feature Highlights with code examples 
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2) Block structure. Functions generating circuits can be reused as 

    subroutines to generate larger circuits: 

 

 

 

 

 

 

• Operators such as with _ controls, can take an entire block of code as 
an argument. 

• “do” introduces an indented block of code. 

• “$” before “do” is an idiosyncrasy of Haskell syntax. 

 

 



Quipper Feature Highlights with code examples 
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3) Circuit operators. Quipper can treat circuits as data and provide high- 

     level operators for manipulating whole circuits: 

 

 

 

 

 

 

 

 

• the operator reverse_ simple reverses a circuit. 



Quipper Feature Highlights with code examples 
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4) Circuit transformers. Provides user-programmable “circuit transformers” as 
    a mechanism for modifying a circuit on a gate-by-gate basis: 
 
 
 
 
 
 
 
 
 
 
 
 

 
• the timestep circuit in previous Figure can be decomposed into binary gates 

using the “Binary timestep” transformer. 



Quipper Feature Highlights with code examples 
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5) Automated functional-to-reversible translation. Provides a special 
keyword build_circuit for automatically synthesizing a circuit from an 
ordinary functional program: 

 

 

 

 

 

 

 

 

• the type Bool is used for Boolean “parameters,” which must be 
known at circuit-generation time, 

• the type Bit is used for Boolean “inputs,” which may be known only at 
circuit-execution time. 

 

 

 

 

 



Quipper Feature Highlights with code examples 
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5) Automated functional-to-reversible translation. The resulting 
circuit from previous Figure can be made reversible with the 
operator classical _to _ reversible: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Experience with Quipper 
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Quipper has been used to implement seven nontrivial quantum algorithms, covering a 
broad spectrum of quantum techniques (Quantum Fourier Transform, phase 
estimation, Trotterization, amplitude amplification): 

 

 

 

 

 

 

 

 
• Each of these algorithms solves a problem believed to be classically hard.  

• Each algorithm gives an asymptotic quantum speedup, but not necessarily an exponential one. 

• All of these algorithms can be run, in the sense that we can print the corresponding circuits for small 
parameters and perform automated gate counts for circuits of less tractable sizes. 



Example subroutines written in Quipper 
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Procedural example. This circuit “implements” the time step for a quantum walk in the 
Binary Welded Tree algorithm (by “implementing” an algorithm, we mean realizing it 
as a computer program): 
1) Inputs a list of pairs of qubits  

    (ai, bi), and a single qubit r.  
 

2) First generates an ancilla 

     qubit in state |0〉. 
 

3) Applies the two qubit gate 

    W to each of the pairs (ai, bi). 
 

4) It is followed by a series of  

    doubly controlled NOT-gates  

    acting on the ancilla. 
 

5) After a middle gate eiZt, it  

    applies all the gates in  

    reverse order.  
 

6) The ancilla ends up in the state  

     |0〉 and is no longer needed. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example subroutines written in Quipper 
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Procedural example. In the Binary Welded Tree algorithm, the Quipper code is: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example subroutines written in Quipper 
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Procedural example. The circuit generated by the code in previous 
Figure, with three qubit pairs: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example subroutines written in Quipper 
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Procedural example. The circuit generated by the code in previous 
Figure, with 30 qubit pairs: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example subroutines written in Quipper 
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A functional-to-reversible translation. Among other things, this algorithm contains an oracle 
calculating a vector r of complex numbers. The calcRweights function is the core of the oracle: 
 

Contains: 

1) Algebraic and  

transcendental 

operations on  

real and complex 

numbers (such as  

sin, cos, sinc, and 

mkPolar). 

2) Subroutines 

(such as edgetoxy  

and itoxy) not 

shown in Figure. 

3) This Function is  

readily processed  

using Quipper’s  

automated 

circuit-generation 

facilities. 

 

 

 

 

 

 

 

 

 

 

 



Example subroutines written in Quipper 
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A functional-to-reversible translation. Algebraic and transcendental functions are mapped 
automatically to quantum versions provided by an existing Quipper library for fixed-point real 
and complex arithmetic. The result of calcRweight function is the rather large circuit: 
 

 

 

 

 

 

 

 

 

 
This example is from the Quantum Linear Systems algorithm published by Harrow, A.W., 
Hassidim, A., and Lloyd, S. Quantum algorithm for solving linear systems of equations. Physical 
Review Letters 103, 15 (Oct. 2009), 150502. 

 



The design of Quipper 
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1. Quipper is an example of a language suited to a quantum 
coprocessor model. 

2. As an embedded language, Quipper is confined to using Haskell’s 
type system, providing many important safety guarantees. 

3. However, due to Haskell’s lack of support for linear types, some 
safety properties (such as the absence of attempts to clone quantum 
information) are not adequately supported. 

Note that the absence of cloning is already guaranteed by the physics, regardless of 
what the programming language does.  

However, one could similarly say the absence of an illegal memory access is 
guaranteed by a classical processor’s page-fault mechanism. It is nevertheless 
desirable to have a programming language that can guarantee prior to running the 
program that the compiled program will never attempt to access an illegal 
memory location or, in the case of a quantum programming language, will not 
attempt to apply a controlled-not gate to qubits n and m, where n = m. 


