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Definition of Quantum logic gate 

A quantum logic gate is a device that carries out a given unitary operation on its 
input qubits in a fixed period of time.  

 A linear function maps a qubit to a qubit (it preserves normalized vectors) if it is unitary.  

 Unitarity is the only requirement on linear maps for quantum evolution. 

 Any unitary linear map defines a valid single qubit quantum circuit.  

1. The transformation it achieves is given by Schrödinger’s equation: 

2. Unitary matrices are related to physical processes via the equation: 

3. Time evolution is described by a unitary 
     transformation of an initial state 

to a final state: 

4. It transforms state              unitarily until a  
    measurement of an observable is made with 

outcome one eigenvalue λj  of the observable, 
with probability p(λj) for the collapsed state.  

• Any quantum gate is described by unitary matrices, their action is always logically 

reversible and are related to physical processes.   

• Any quantum gate is implemented physically as the quantum mechanical evolution of an 

isolated quantum system: 
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Special 1-Qubit Gates:             Pauli Spin Matrices  

Any 1-qubit Hamiltonian can always be written as weighted sum of the Pauli matrices:   

Some common forms for Hamiltonians that arise in practice are 

1. The Ising interaction 

2. The XY interaction 

3. The form 

where the parenthetical superscripts labels which of two qubits the operator acts upon 

The Pauli X matrix is the classical (reversible) NOT gate   

X negates the computational basis states      and      , correctly as these correspond to 
the classical bits, 0 and 1. 
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                  Is Pauli X a NOT Gate for Qubits? 

 The NOT gate has the effect of mapping a state at the North pole of the Bloch sphere into a 

state at the South pole and vice versa. 

 But, is a NOT gate the operation that maps a qubit      ,    lying at any point on the surface of 

Bloch sphere, into its antipodal state          , on the opposite side of the Bloch sphere? 
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Check whether: 

the antipodal state is: 

Hence, the result of The Pauli X gate cannot “negate” an arbitrary superposition  
state, and is not a universal NOT gate for qubits. 
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                  Special 1-Qubit Gates:    

The simplest 1-qubit non-classical gate is a fractional power of NOT gate, such as:   

Properties 

1. A repeated application of the gate is equivalent to NOT: 

2. A single application results in a quantum state that neither corresponds to the   
    classical bit 0 or 1. 

3.                is the first truly 1-qubit non-classical gate: 
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Special 1-Qubit Gates:          Hadamard Gate 

The most useful single qubit gate is the Walsh-Hadamard gate, H: 
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It acts so as to map computational basis states into superposition states and vice versa: 

By applying in parallel, n 
H-gates independently 
to n qubits,  an n-qubit 
superposition is created 
whose component 
eigenstates are the 
binary representation of 
all the integers in the 
range 0 to 2n − 1. 

A superposition 
containing 
exponentially many 
terms can be prepared 
using only a 
polynomial number of 
operations. 

H-gate  transforms the input according to 
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Rotations About the x-, y-, and z-Axes 
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 We have to show how to implement a controlled U gate, C(U), for any single qubit unitary 
transformation U. For any matrix or linear map A we formally write: 

What is the most general kind of quantum gate for a single qubit? 

 If A2 = I, then we have: 

 In particular, this holds for the Pauli matrices X, Y and Z since 

Definition  

The rotation operators around the 

x, y and z axes of the Bloch sphere 

are respectively defined as: 
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Rx(θ)  gate 
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An Rx(θ) gate maps a state       on the surface of the Bloch sphere to a new state, 

Rx(θ)      , represented by the point obtained by rotating a radius vector from the 
center of the Bloch sphere to       through an angle θ/2 around the x-axis. 

Α rotation of 4π is needed to 
return to the original state. 
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Ry (θ)  gate 
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An Ry(θ) gate maps a state       on the surface of the Bloch sphere to a new state, 

Ry(θ)      , represented by the point obtained by rotating a radius vector from the 
center of the Bloch sphere to       through an angle θ/2 around the y-axis. 

Α rotation of 4π is needed to 
return to the original state. 



10 

Rz (θ)  a  z-rotation  gate 
An Rz (θ) gate maps a state       on the surface of the Bloch sphere to a new state, 

Rz (θ)      , represented by the point obtained by rotating a radius vector from the 
center of the Bloch sphere to       through an angle θ/2 around the z-axis. 

Α rotation of 4π is needed to 
return to the original state. 

Αction of Rz(α) on 

If we multiply by a phase factor of exp(iα/2): 

The action of Rz(α) gate is to advance the angle φ by α and 
hence rotate the state about the z-axis through angle α. 



11 

The phase Ph(δ)  gate 
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If U is a single qubit unitary operation, then there exist α, β, γ and δ such 

that U = eiδRz(α)Ry(β)Rz(γ). 

A phase Ph(δ) gate is defined by the identity matrix I: 

The NOT, √NOT, and Hadamard gates can be obtained via sequences of rotation gates: 

The Hadamard gate, the phase gates π/2 and π/4, and the CNOT gate together form a finite 
universal set of gates: any unitary transformation on two or more qubits can be efficiently 
approximated as accurately as desired by a circuit with a finite number of these gates. 
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Decomposition of Rx(θ) Gate 
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Since any arbitrary 1-qubit gate can be achieved without performing a 

rotation about the x-axis, we note that it is possible to express rotations 

about the x-axis purely in terms of rotations about the y- and z-axes. 

where ≡ is to be read as “equal up to an unimportant arbitrary overall phase factor”. 

Exercise  
Check that XYX = −Y and XZX = −Z;  
then show that XRy(θ)X = Ry(−θ) and  XRz(θ)X = Rz(−θ). 
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Controlled Quantum Gates 
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 Non-trivial computations change the operation applied to one set of qubits depending upon 

the values of some other set of qubits.  

 The gates that implement these “if-then-else” type operations are called controlled gates. 

The quantum circuit corresponding to a gate that 

performs different control actions according to whether 

the top qubit is        or      . 

 If a controlled quantum gate acts on a superposition state all of the control actions are 
performed in parallel and we do not need to read control bits during its application. 

 Let A and B be a pair of unitary matrices corresponding to arbitrary 1-qubit quantum gates. 
Then the gate defined by their direct sum: 

performs a “controlled” operation in the 
following sense. 
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 “Controlled” Gate in the Quantum Context 
 If the first qubit is in state     , the input state is:                             , and upon the gate action:  

 If the first qubit is in state     , the input state is:                             , and upon the gate action:  

 Overall, when the 2-qubit controlled gate (A ⊕ B) acts on a general 2-qubit superposition state 
                                                                     the control qubit is no longer purely      or purely      .  

The linearity of quantum mechanics guarantees that the correct control actions are performed,   
in the correct proportions, on the target qubit:  
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Classical reversible gates vs quantum gates  

 CNOT, FREDKIN (controlled-SWAP), and TOFFOLI (controlled-controlled-NOT) are classical 
reversible gates, but in addition they are also quantum gates because the transformations 
(permutations of computational basis states) are unitary. 

 However, controlled quantum gates can be far more sophisticated than controlled classical 
gates.  

 For example, the quantum generalization of the CNOT gate is the controlled-U gate: 

Any d-dimensional unitary matrix on       can be written as the composition of at 
most: d(d−1)/2, two-dimensional unitary matrices. 

A general way of writing a 2-dimensional unitary matrix, except for an overall phase factor, is 

A family of universal 2-qubit gates can be built using y, 

The Γ2[y] means that this is a 2-qubit 
gate which applies y to the 2nd qubit 
conditional on the 1st qubit being in 
|1〉. 
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Multiply-Controlled Gates 
Controlled gates can be generalized to have multiple controls, where a different operation is 
performed on the third qubit depending on the state of the top two qubits. 

 For example, the quantum circuit corresponding to a gate that performs different control 
actions according to whether the top two qubits are                                           , is:  

The number of distinct states of the controls grows exponentially with the number of controls! 

Such controlled gates can be decomposed into a simpler set of standard gates by factoring a 

controlled gate as in                                                                    where                     . 

The core “controlled” component of the gate is                                           , of the controlled-U. 

Generally, the controlled-U 
transform for any 1-qubit 
unitary transform U, maps 
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Quantum circuit for a 2-qubit controlled-U gate 
Given the quantum circuit decomposition for computing                                                  , , what is a 
quantum circuit that computes controlled-U? 

 We can construct a quantum circuit for a 2-qubit controlled-U gate in terms of CNOT gates 
and 1-qubit gates as follows. Given the angles a, b, c, and d, define matrices A, B, C as: 

A quantum circuit that computes an 
arbitrary 1-qubit controlled-U is: 

The transformation to which the target qubit will be subject when the control qubit in the circuit  
is      :                                  ( gate A first then gate B then gate C ) 

The net effect of these 
three operations is the 
identity (as required). 
The transformation to which the target qubit will be subject when the control qubit in the circuit  
is      :                                       (the control qubit first picks up a phase factor since                         ) 
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Quantum circuit for a 2-qubit controlled-U gate 
Given the quantum circuit decomposition for computing                                                  , , what is a 
quantum circuit that computes controlled-U? 

 Τhe circuit for controlled-U performs as follows: 
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Flipping the Control and Target Qubits 
 The control qubit does not have to be the topmost qubit in a quantum circuit. 
 An upside down controlled-U gate would be given by: 

The 2nd qubit is the control qubit 

and the 1st qubit the target qubit. 

The result is the matrix corresponding to a 
2-qubit controlled quantum gate inserted 
into a circuit “upside down”. 

A 2-qubit quantum gate with the special action conditioned on the value of the first qubit 
being       instead of       is related to usual controlled gate as: 
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Circuit for Controlled-Controlled-U 

Generalizing the controlled-controlled-NOT (TOFFOLI) gate leads us to consider a 
controlled-controlled-U gate, where U is an arbitrary 1-qubit gate: 

Any controlled-controlled-U gate is a circuit built from only CNOT gates and 1-qubit gates, 
such as that V2 = U.  

Operation of this circuit to the eight possible computational basis states of a 3-qubit system . 


