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Reversible Gates 
 Any classical computation can always be decomposed into a sequence of logic gates that act 

on only a few bits at a time. 

 Universal Gates: NAND and NOR, are sufficient to express any desired computation. 

 Restricting circuits to using a single type of universal gate does not necessarily lead to the 
smallest circuit for computing a desired Boolean function but it does allow chip 
manufacturers to perfect the design and manufacturing process for the universal gate. 

 Today, the microprocessor industry pursues this strategy by basing their circuits on the NAND 
(“NOT AND”) gates:                              often written as       and is universal for classical 
irreversible computing. 

 Logical irreversibility comes at a price: energy must be dissipated when information is erased, 
in the amount kT ln2 per bit erased (k=1.3805 × 10−23 JK−1). Miniaturization of computer 
technology, implementing nanoelectronics, will be impeded by the difficulty of removing this 
unwanted waste heat from deep within the irreversible circuitry. 

 One way chip manufacturers can suppress the unwanted heat produced as a side  effect of 
running irreversible logic gates is to modify their chip designs to use only reversible logic 
gates. In a reversible logic gate there is a unique input for a unique output and vice versa. 

 Reversible gates never erase any information when they act, and a computation based on 
reversible logic can be run forward to obtain an answer, the answer copied, and then the 
whole computation undone to recover all the energy expended apart from the small amount 
used to copy the answer at the mid-way point. 
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Reversible Gates: NOT and SWAP 
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Truth table of NOT Icon for the XOR gate—a  1-bit logically reversible gate 

Truth table of SWAP Icon for the SWAP gate—a 2-bit logically reversible gate 

Alternative icon for a SWAP gate that is more common in quantum circuit 
diagrams. The reason for having a different icon for SWAP in quantum circuits 
compared to classical circuits is that many implementations of quantum 
circuits do not have physical wires as such. Hence, it could be misleading to 
depict a SWAP operation as a crossing of wires. Instead, a SWAP operation 
can be achieved as the result of a sequence of applied fields. 
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Reversible Gates: CNOT 
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Truth table of CNOT 

“controlled-NOT” 
  The decision to negate or not negate the second bit is controlled by the value of the first bit. 
  The effect of CNOT is to flip the bit value of the 2nd bit if and only if the 1st bit is set to 1. 

Icon for the CNOT gate—a 2-bit logically reversible gate 

The SWAP gate can be obtained from a sequence of three CNOT gates. 
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Universal Reversible Gates: FREDKIN 
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Truth table of FREDKIN 

FREDKIN (controlled-SWAP) gate 

  The decision to SWAP the second and third bit is controlled by the value of the first bit. 

  The effect of FREDKIN is to swap the values of 2nd and 3rd bits only if the 1st bit is set to 1. 

Icon for the FREDKIN 

The smallest gates that are both reversible and universal require three 
inputs and three outputs 
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Universal Reversible Gates: TOFFOLI 
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Truth table of TOFFOLI 

 The values of the first two input bits control whether the third input bit is flipped. 
 It is flipping the third input bit if, and only if, the first two input bits are both 1. 
 The TOFFOLI (controlled-controlled NOT) gate can simulate a reversible NAND: by 

choosing c = 1, we get:   

Icon for the TOFFOLI 

We can make any irreversible classical gate into an equivalent but 
reversible gate by using the Toffoli gate, a reversible classical gate. 

Output for reversible NAND 
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TOFFOLI gate can simulate NAND and FANOUT 
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Truth table of TOFFOLI 

 With NAND and FANOUT it is possible to construct any classical gate. 

 The Toffoli gate can thus be used to construct, in a reversible way, any 

classical gate f. 

Icon for the TOFFOLI acting as a FANOUT 

The Toffoli gate transformation is unitary, and thus can be implemented 
as a quantum gate. 
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Reversible Gates Expressed as Permutation Matrices 
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 Any n-bit reversible gate must specify how to map each distinct bit string input into 

a distinct bit string output of the same length.  

 Thus no two inputs are allowed to be mapped to the same output and vice versa.  

 This ensures the mapping is reversible. 

Since reversible logic gates are symmetric with respect to the number of inputs and 
outputs, we can represent them in ways other than the truth table, in the form of a 
matrix or as a graphic. 

Example 
                                              INPUT  
 
  OUTPUT 
 

Thus, a  natural way to represent an n-bit reversible gate is as an array whose 

rows and columns are indexed by the 2n possible bit strings expressible in n-bits. 
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Permutation Matrices: CNOT and SWAP gates 
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 The resulting array will contain a single 1 in each row and column and zeroes everywhere 
else, and will therefore be a permutation matrix. 

 The matrices corresponding to classical reversible gates are always permutation matrices, 
i.e., 0/1 matrices having a single 1 in each row and column, and permutation matrices are 
always unitary matrices. 
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Permutation Matrix of TOFFOLI gate 
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Circuit representation  
of Toffoli gate 
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Permutation Matrix of FREDKIN gate 

ΝΑΝΟΗΛΕΚΤΡΟΝΙΚΗ & ΚΒΑΝΤΙΚΕΣ ΠΥΛΕΣ- 2016 Χ. Χρηστίδης 

Circuit representation of Fredkin gate 

FREDKIN gate performs a controlled-SWAP operation. 
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The effect of TOFFOLI gate on an input bit string 
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TOFFOLI gates act on three bits, and every column vector consists of 23 = 8 slots: 

The effect of TOFFOLI gate on such an input is given by vector-matrix multiplication: 
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Universal Reversible Basis 
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The reversible basis consisting of NOT, CNOT and Toffoli gates is universal for reversible 
computation. 
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Ancillae in Reversible Computing 
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 Every permutation on {0, 1}n can be realized by means of a reversible circuit over 
the NOT-CNOT-TOFFOLI basis using at most one ancilla bit. 

 A reversible circuit computes a Boolean function                                   .  

At the end of the computation all ancillae have their initial values, except one ancilla 
bit, designated as the “answer” bit, that carries the value of the function. 
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Balanced and unbalanced Boolean function in Reversible Computing 
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Every reversible circuit on m inputs, computing f, has exactly m outputs with one of them 
considered the value of f.  

Not balanced f 

 If the function is not balanced, we require m > n and there must be at least one ancilla bit. 

For example, the Toffoli gate can be used to construct NAND and FANOUT, using some ancilla 

bits 0 or 1 as input. 

 We also have some garbage in the output which is not needed in the rest of computation. 

 The ancilla and garbage bits are only important to make the computation reversible. 

 We can represent this by:                                                    ,  where we can assume all ancilla bits 

are 0 with the aid of the NOT gate. 

Balanced f 
 If m = n, i.e., there is no ancilla bit, then every output function must be a balanced Boolean 

function.  
 A balanced function on {0, 1}n returns a value “1” for 2n−1 of its inputs and a value “0” for 

the other 2n−1 inputs.  
 A balanced function there is in NOT gate. 
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Reversible Circuits  

ΝΑΝΟΗΛΕΚΤΡΟΝΙΚΗ & ΚΒΑΝΤΙΚΕΣ ΠΥΛΕΣ- 2016 Χ. Χρηστίδης 

1. Assume all ancilla bits are 0 and the garbage bits be in a standard state, by 

adding a fourth register in an arbitrary state     so that the effect of the reversible 

circuit is: 

2. Next, use the CNOT gate to induce: 

 

3. Finally, apply the inverse of the circuit 1 to the first three registers to obtain: 

 

Deleting the ancilla bits, the overall evaluation is:  

 

which is the standard reversible circuit for evaluating f. 
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Can All Boolean Circuits Be Simulated Reversibly? 

Synchronous circuit: 
 all paths from the inputs to any 

gate have the same length, 
 have delay (identity) gates,  
 gates at level m get inputs from 

gates at level m − 1. 
 an irreversible circuit can be 

synchronous. 

A simple (naïve) method for simulating any Boolean (irreversible) circuit is to replace each 
irreversible gate in the circuit with its reversible counterpart. 

Reversible simulation of classical gates 

Terminology 
      For a Boolean circuit: 
 Size-t is the total number of gates.  
 Depth-d is the number of levels. 
 Width-w is the maximum number of gates in any 

level. 
 Space-A is the number of ancillae required to 

perform a computation. 
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Efficiency of Reversible Simulation 

The control gate is a hollow circle instead of 
the filled circle on the top line, and it flips the 
target bit if the control bit is 0. 

There is a procedure to create a reversible circuit that simulates an irreversible circuit while 
making substantial savings in the number of ancillae used. 

1. Simulate the gates 
in the first-half 
levels. 

2. Keep the results of 
the gates in level 
d/2 separately. 

3. Clean up the 
ancillae bits. 

4. Use them to 
simulate the gates 
in the second-half 
levels. 

5. After computing 
the output, clean 
up the ancillae bits. 

6. Clean up the result 
of level d/2. 

This method needs roughly 
half the number of ancillae 
used by the previous (naive) 
method. 
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Efficiency of Reversible Simulation 

Conclusion 
Since most of the irreversible computations going on inside a computer could, in principle, 
be implemented using reversible logic gates, then: 

there is no need of net energy to run, apart from operations that require erasure of 
information, such as overwriting a memory register to make a copy of an answer! 

 

Information 
 Thus, the vast majority of the operations employed along the way can be done 

reversibly, and hence, don’t generate any more information in their output than they 
had in their input. 

 Computers just take the known information given as input and re-arrange it. 

Any irreversible computation (in the synchronous form) having t gates, depth d, and width w, can 
be simulated by a reversible circuit having O(t2.58) gates, and at most (w + 1) log d + O(1) ancillae. 

“Computers are useless—they only give answers!” 

               Pablo Picasso  

By applying the above procedure recursively, on a circuit of size t, depth d, and width w we 
obtain the following recursive relations for S, the size, and A, the number of ancillae needed: 

Solving these recursion relations leads to the following result. 
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Problems 

Problem 1: There is nothing special about the control 
bit in the CNOT gate to take value 1. The control gate 
in figure flips the target bit if the control bit is 0. This 
is represented pictorially by a hollow circle instead of 
the filled circle on the top line. What is its matrix 
representation? 

Problem 2: Show that the circuit on the left in Figure, swaps the two qubits. It is 
denoted by the figure on the right. 
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