## NANOHへEKTPONIKH \& KBANTIKE $\Sigma$ ПY $\triangle E \Sigma$ $5^{n} \Delta \mathrm{a}$ 人 $\lambda \varepsilon \xi \eta$

Bı $\beta \lambda \iota 0 \gamma \rho \alpha \phi i \alpha:$ EXPLORATIONS IN QUANTUM COMPUTING, Colin P. Williams (2nd edition, Springer-Verlag, 2011), chapter 1.

## Extracting Answers from Quantum Computers

- Observables in Quantum Mechanics
- Observing in the Computational Basis
- Alternative Bases
- Change of Basis
- Observing in an Arbitrary Basis
- Problems with solutions


## Observing in the Computational Basis

A $n$-qubit register can be found in a superposition of all the $2^{n}$ possible bit strings:

$$
|00 \ldots 0\rangle,|00 \ldots 1\rangle, \ldots,|11 \ldots 1\rangle
$$

When we describe the state of a multi-qubit quantum memory register as a superposition of its possible bit-string configurations, we say the state is represented in the computational basis.

The most common measurement in quantum computing is to measure a set of qubits "in the computational basis", where the spin orientation of each qubit in the quantum memory register is measured along an axis parallel to the $z$-axis of the Bloch sphere, which is the axis passing through North and South poles.

Each qubit will be found to be aligned or anti-aligned with the $z$-axis, with "spin-up" (i.e., in state |0才) or "spin-down" (i.e., in state |1)) respectively.

## Complete Readout

Consider a 3-qubit quantum memory register that initially is in the state:

$$
\begin{aligned}
& |\psi\rangle=c_{0}|000\rangle+c_{1}|001\rangle+c_{2}|010\rangle+c_{3}|011\rangle+c_{4}|100\rangle+c_{5}|101\rangle+c_{6}|110\rangle+c_{7}|111\rangle \\
& \text { where }\left|c_{0}\right|^{2}+\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}+\left|c_{3}\right|^{2}+\left|c_{4}\right|^{2}+\left|c_{5}\right|^{2}+\left|c_{6}\right|^{2}+\left|c_{7}\right|^{2}=1
\end{aligned}
$$

For convenience imagine labeling the leftmost qubit $A$, the middle qubit $B$, and the rightmost qubit $C$. The probabilities of obtaining the eight distinct triples of values when three qubits are read in the computational basis are:

| Qubit $A$ | Qubit $B$ | Qubit $C$ | Probability |
| :--- | :--- | :--- | :--- |
| $\|0\rangle$ | $\|0\rangle$ | $\|0\rangle$ | $\left\|c_{0}\right\|^{2}$ |
| $\|0\rangle$ | $\|0\rangle$ | $\|1\rangle$ | $\left\|c_{1}\right\|^{2}$ |
| $\|0\rangle$ | $\|1\rangle$ | $\|0\rangle$ | $\left\|c_{2}\right\|^{2}$ |
| $\|0\rangle$ | $\|1\rangle$ | $\|1\rangle$ | $\left\|c_{3}\right\|^{2}$ |
| $\|1\rangle$ | $\|0\rangle$ | $\|0\rangle$ | $\left\|c_{4}\right\|^{2}$ |
| $\|1\rangle$ | $\|0\rangle$ | $\|1\rangle$ | $\left\|c_{5}\right\|^{2}$ |
| $\|1\rangle$ | $\|1\rangle$ | $\|0\rangle$ | $\left\|c_{6}\right\|^{2}$ |
| $\|1\rangle$ | $\|1\rangle$ | $\|1\rangle$ | $\left\|c_{7}\right\|^{2}$ |

## Partial Readout

Consider again the 3-qubit quantum memory register that initially is in the state:
$|\psi\rangle=c_{0}|000\rangle+c_{1}|001\rangle+c_{2}|010\rangle+c_{3}|011\rangle+c_{4}|100\rangle+c_{5}|101\rangle+c_{6}|110\rangle+c_{7}|111\rangle$

Suppose we measure only the middle qubit, B , and find it to be in state |1>
This measurement projects the qubits into a form that constrains the middle qubit to be|1), but leaves the other 2 qubits indeterminate (since neither qubits A nor C were measured).
Moreover, the resulting state must still be properly normalized. Hence, after the measurement, the state of the 3 -qubit memory register is:

$$
\frac{c_{2}|010\rangle+c_{3}|011\rangle+c_{6}|110\rangle+c_{7}|111\rangle}{\sqrt{\left|c_{2}\right|^{2}+\left|c_{3}\right|^{2}+\left|c_{6}\right|^{2}+\left|c_{7}\right|^{2}}}
$$

After a partial measurement survive only terms from the initial state of the register that contain the measured qubit state. Bit strings without the measured qubit state are omitted.

## Alternative Bases

A basis for an $n$-qubit quantum memory register is any complete orthonormal set of eigenstates where any $n$-qubit state can be written as a superposition of states taken from this set only .

Typical bases for 2-qubit quantum memory register.

Basis
$\theta^{\circ}$ Rotated

## Eigenstates



## How the eigenvectors in the two bases are related?

Rotations in computational basis are represented with a unitary operator: $U=\sum_{k}\left|b_{k}\right\rangle\left\langle a_{k}\right|$
An operator, $U$, of this form is a unitary matrix that induces the following mapping between the " a "-basis (column vector) and the " b "-basis (column vector): $\left|b_{1}\right\rangle=U\left|a_{1}\right\rangle$

$$
\begin{gathered}
\left|b_{2}\right\rangle=U\left|a_{2}\right\rangle \\
\vdots \\
\left|b_{2^{n}}\right\rangle=U\left|a_{2^{n}}\right\rangle
\end{gathered} \quad\left[\begin{array}{c}
\left|b_{j}\right\rangle=U\left|a_{j}\right\rangle \\
\left\langle b_{j}\right|=\left\langle a_{j}\right| U^{\dagger}
\end{array}\right.
$$

Thus a given state $|\psi\rangle$ can be written in either the "a"-basis or the "b"-basis as:

$$
|\psi\rangle=\sum_{i} \alpha_{i}\left|a_{i}\right\rangle=\sum_{j} \beta_{j}\left|b_{j}\right\rangle
$$

$$
\alpha_{i}=\left\langle a_{i} \mid \psi\right\rangle
$$

where the amplitudes $\alpha_{i}$ and $\beta_{j}$ are given by the inner products:

$$
\beta_{j}=\left\langle b_{j} \mid \psi\right\rangle
$$

$6_{j}$ amplitudes can be expressed in terms of $\alpha_{i}$ amplitudes and the unitary matrix elements :

$$
\beta_{j}=\left\langle b_{j} \mid \psi\right\rangle=\left\langle b_{j}\right|\left(\overline{\sum_{i}\left|a_{i}\right\rangle\left\langle a_{i}\right|}\right)|\psi\rangle=\sum_{i}\left\langle b_{j} \mid a_{i}\right\rangle\left\langle a_{i} \mid \psi\right\rangle=\sum_{i}\left\langle a_{j}\right| U^{\dagger}\left|a_{i}\right\rangle\left\langle a_{i} \mid \psi\right\rangle=\sum_{i}\left(U^{\dagger}\right)_{j i} \alpha_{i}
$$

$$
\text { and }|\psi\rangle \text { " } b \text { "-basis }=\sum_{j} \beta_{j}\left|b_{j}\right\rangle=U^{\dagger}|\psi\rangle_{" a " \text { "basis }}
$$

## Change of Basis for a State (vector) and for an Operator (observable)

A unitary transformation $U$ between the Diagonal and computational bases for a state vector is:

$$
U=\sum_{k}\left|b_{k}\right\rangle\left\langle a_{k}\right|=|\swarrow\rangle\langle 0|+|\searrow\rangle\langle 1|=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\langle 0|+\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\langle 1|=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)
$$

An observable for some property of an $n$-qubit system is represented by a $2^{n} \times 2^{n}$ dimensional Hermitian matrix: $\mathcal{O}=\mathcal{O}^{\dagger}$, and so the eigenvalues $\left\{\lambda_{i}\right\}$ of $\mathcal{O}$ are real numbers for the set of its eigenvectors $\left\{\left|\psi_{i}\right\rangle\right\}$ :

$$
\mathcal{O}\left|\psi_{i}\right\rangle=\lambda_{i}\left|\psi_{i}\right\rangle
$$

Repeated measurements on several preparations of the state $|\psi\rangle$ give an average value that is always a real number:

$$
\langle\mathcal{O}\rangle=\langle\psi| \mathcal{O}|\psi\rangle
$$

where $|\psi\rangle$ and $\mathcal{O}$ should be described with respect to the same basis.
Change of Basis for an Operator $\mathcal{O}$, given initially in the "a"-basis, is expressed by a "similarity matrix transformation" in the "b"-basis :

$$
\left\langle b_{k}\right| \mathcal{O}\left|b_{\ell}\right\rangle=\sum_{m} \sum_{n}\left(U^{\dagger}\right)_{k m} \mathcal{O}_{m n} U_{n \ell}
$$

An operator in the "a"-basis transforms into the " $b$ "-basis with a similarity matrix transformation:

$$
\mathcal{O}^{\prime \prime}{ }^{\prime \prime} \text {-basis }=U^{\dagger} \cdot \mathcal{O} \text { "a"-basis } \cdot U
$$

## Observing in an Arbitrary Basis

A given quantum state does not have a unique interpretation: any state-even the state of a quantum memory register-can be pictured as different superposition states over different bases.

Measuring the state of a qubit initially in state $a|0\rangle+b|1\rangle$ along an axis passing through states $|\psi\rangle$ and $\left|\psi^{\perp}\right\rangle$ corresponds to measuring the qubit in the basis $\left\{|\psi\rangle,\left|\psi^{\perp}\right\rangle\right\}$.


## Problems with Solutions

Problem \#1 Let $\{|0\rangle,|1\rangle, \ldots,|n-1\rangle\}$ be an orthonormal basis in the Hilbert space $\mathbf{C}^{n}$. Is $|\psi\rangle=\frac{1}{\sqrt{n}}\left(\sum_{j=0}^{n-2}|j\rangle \otimes|j+1\rangle+|n-1\rangle \otimes|0\rangle\right)$ independent of the chosen orthonormal basis? Solution Consider the special case $\mathbf{R}^{2}$. Let $|0\rangle=\binom{1}{0}, \quad|1\rangle=\binom{0}{1}$

Thus

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\binom{1}{0} \otimes\binom{0}{1}+\frac{1}{\sqrt{2}}\binom{0}{1} \otimes\binom{1}{0}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)
$$

Now let

$$
|0\rangle=\frac{1}{\sqrt{2}}\binom{1}{1}, \quad|1\rangle=\frac{1}{\sqrt{2}}\binom{1}{-1} .
$$

Then

$$
|\psi\rangle=\frac{1}{\sqrt{2}} \frac{1}{2}\binom{1}{1} \otimes\binom{1}{-1}+\frac{1}{\sqrt{2}} \frac{1}{2}\binom{1}{-1} \otimes\binom{1}{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right)
$$

Thus, $|\psi\rangle$ depends on the chosen basis.

## Problems with Solutions

Problem \#2 In the product Hilbert space $\mathbf{C}^{2} \otimes \mathbf{C}^{2}$ the Bell states are $\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle), \quad\left|\Phi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle-|1\rangle \otimes|1\rangle) \quad\left|\Psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|1\rangle+|1\rangle \otimes|0\rangle)$, $\left|\Psi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|1\rangle-|1\rangle \otimes|0\rangle)$ Here, $\{|0\rangle,|1\rangle\}$ is an arbitrary orthonormal basis in $\mathbf{C}^{2}$.
Let $|0\rangle=\binom{e^{i \phi} \cos \theta}{\sin \theta},|1\rangle=\binom{-e^{i \phi} \sin \theta}{\cos \theta} \begin{gathered}\text { (i) Find }\left|\Phi^{+}\right\rangle,\left|\Phi^{-}\right\rangle,\left|\Psi^{+}\right\rangle \text {, and }\left|\Psi^{-}\right\rangle \text {for this basis. } \\ \text { (ii) Consider the special case when } \phi=0 \text { and } \theta=0 .\end{gathered}$
Solution
(i) We obtain $\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}e^{2 i \phi} \\ 0 \\ 0 \\ 1\end{array}\right),\left|\Phi^{-}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}e^{2 i \phi} \cos (2 \theta) \\ e^{i \phi} \sin (2 \theta) \\ e^{i \phi} \sin (2 \theta) \\ -\cos (2 \theta)\end{array}\right) \quad\left|\Psi^{+}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}-e^{2 i \phi} \sin (2 \theta) \\ e^{i \phi} \cos (2 \theta) \\ e^{i \phi} \cos (2 \theta) \\ \sin (2 \theta)\end{array}\right)$.

$$
\left|\Psi^{-}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
e^{i \phi} \\
-e^{i \phi} \\
0
\end{array}\right) \begin{gathered}
\text { (ii) If we choose } \phi=0 \text { and } \theta=0 \text { which simply means we choose the } \\
\text { standard basis for }|0\rangle \text { and }|1\rangle\left(\text { i.e., }|0\rangle=(10)^{T} \text { and }|1\rangle=(01)^{T}\right) \text {, we find }
\end{gathered}
$$

$$
\left.\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right),\left|\Phi^{-}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right) \quad \Psi^{+}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right) \quad\left|\Psi^{-}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right)
$$

## Problems with Solutions

Problem \#3 Let $A$ and $B$ be two $n \times n$ matrices over $\mathbf{C}$. If there exists a non-singular $n \times n$ matrix $X$ such that $A=X B X^{-1}$ then $A$ and $B$ are said to be similar matrices. Show that the spectra (eigenvalues) of two similar matrices are equal.

Solution We have $\operatorname{det}\left(A-\lambda I_{n}\right)=\operatorname{det}\left(X B X^{-1}-X \lambda I_{n} X^{-1}\right)=\operatorname{det}\left(X\left(B-\lambda I_{n}\right) X^{-1}\right)$

$$
=\operatorname{det}(X) \operatorname{det}\left(B-\lambda I_{n}\right) \operatorname{det}\left(X^{-1}\right)=\operatorname{det}\left(B-\lambda I_{n}\right)
$$

## Problem \#4

Let $|\psi\rangle=\binom{e^{i \phi} \cos \theta}{\sin \theta}$ where $\phi, \theta \in \mathbf{R}$. (i) Find $\rho:=|\psi\rangle\langle\psi|$. (ii) Find tr $\rho$. (iii) Find $\rho^{2}$ Solution (i) Since $\langle\psi|=\left(e^{-i \phi} \cos \theta, \sin \theta\right)$ we obtain the $2 \times 2$ matrix

$$
\rho=|\psi\rangle\langle\psi|=\left(\begin{array}{cc}
\cos ^{2} \theta & e^{i \phi} \sin \theta \cos \theta \\
e^{-i \phi} \sin \theta \cos \theta & \sin ^{2} \theta
\end{array}\right)
$$

(ii) Since $\cos ^{2} \theta+\sin ^{2} \theta=1$ we obtain from (i) $\operatorname{tr} \rho=1$.
(iii) We have $\rho^{2}=(|\psi\rangle\langle\psi|)^{2}=|\psi\rangle\langle\psi \mid \psi\rangle\langle\psi|=|\psi\rangle\langle\psi|=\rho$ since $\langle\psi \mid \psi\rangle=1$.

The density operator $\rho$ or density matrix is a positive semidefinite operator on a Hilbert space with unit trace. An operator is positive semidefinite if it is hermitian and none of its real eigenvalues are less than zero.

## Problems with Solutions - Density Operators

The state of a quantum-mechanical system is characterized by a density operator $\rho$ with $\operatorname{tr} \boldsymbol{\rho}=1$. The expectation value of an observable $\boldsymbol{A}$, determined in an experiment as the average value $\langle\boldsymbol{A}\rangle$ is given by $\langle\boldsymbol{A}\rangle=\operatorname{tr}(\boldsymbol{A} \boldsymbol{\rho})$.

Problem \#5 A mixed state is a statistical mixture of pure states, i.e., the state is described by pairs of probabilities and pure states. Given a mixture $\left\{\left(p_{1},\left|\psi_{1}\right\rangle\right), \ldots,\left(p_{n},\left|\psi_{n}\right\rangle\right)\right\}$ we define its density matrix to be the positive hermitian matrix

$$
\rho=\sum_{j=1}^{n} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|
$$

where the pure states $\left|\psi_{j}\right\rangle$ are normalized (i.e., $\left\langle\psi_{j} \mid \psi_{j}\right\rangle=1$ ), and $p_{j} \geq 0$ for $j=1,2, \ldots, n$ with

$$
\sum_{j=1}^{n} p_{j}=1
$$

(i) Find the probability that measurement in the orthonormal basis

$$
\left\{\left|k_{1}\right\rangle, \ldots,\left|k_{n}\right\rangle\right\}
$$

will yield $\left|k_{j}\right\rangle$.
(ii) Find the density matrix $\rho_{U}$ when the mixture is transformed according to the unitary matrix $U$.

## Problems with Solutions - Density Operators

Solution \#5 (i) From the probability distribution of states in the mixture we have for the probability $P\left(k_{j}\right)$ of measuring the state $\left|k_{j}\right\rangle(j=1,2, \ldots, n)$

$$
P\left(k_{j}\right)=\sum_{l=1}^{n} p_{l}\left|\left\langle k_{j} \mid \psi_{l}\right\rangle\right|^{2}=\sum_{l=1}^{n} p_{l}\left\langle k_{j} \mid \psi_{l}\right\rangle\left\langle\psi_{l}\right| k_{j}=\left\langle k_{j}\right| \rho\left|k_{j}\right\rangle
$$

(ii) After applying the transform $U$ to the states in the mixture we have the new mixture $\left\{\left(p_{1}, U\left|\psi_{1}\right\rangle\right), \ldots,\left(p_{n}, U\left|\psi_{n}\right\rangle\right)\right\}$, with the density matrix

$$
\begin{aligned}
\rho_{U} & =\sum_{j=1}^{n} p_{j} U\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right| U^{*} \\
& =U\left(\sum_{j=1}^{n} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|\right) U^{*} \\
& =U \rho U^{*}
\end{aligned}
$$

## Problems with Solutions - Density Operators

Problem \#6 Let $A$ and $B$ be a pair of qubits and let the density matrix of the pair be $\rho_{A B}$, which may be pure or mixed. We define the spin-flipped density matrix to be

$$
\widetilde{\rho}_{A B}:=\left(\sigma_{y} \otimes \sigma_{y}\right) \rho_{A B}^{*}\left(\sigma_{y} \otimes \sigma_{y}\right)
$$

where the asterisk denotes complex conjugation in the standard basis

$$
\{|0\rangle \otimes|0\rangle, \quad|0\rangle \otimes|1\rangle, \quad|1\rangle \otimes|0\rangle, \quad|1\rangle \otimes|1\rangle\} \quad \text { and } \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

Since both $\rho_{A B}$ and $\tilde{\rho}_{A B}$ are positive operators, it follows that the product $\rho_{A B} \tilde{\rho}_{A B}$, though non-hermitian, also has only real and non-negative eigenvalues. Consider the Bell state

$$
|\psi\rangle:=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)
$$

and $\rho:=|\psi\rangle\langle\psi|$. Find the eigenvalues of $\rho_{A B} \widetilde{\rho}_{A B}$.

## Solution

Since $\rho=|\psi\rangle\langle\psi|=\frac{1}{2}\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1\end{array}\right)$ we have $\tilde{\rho}=\rho$. Also $\sigma_{y} \otimes \sigma_{y}=\left(\begin{array}{cccc}0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0\end{array}\right)$

Thus $\tilde{\rho}=\rho$ and $\rho \tilde{\rho}=\rho$ with eigenvalues $1,0,0,0$.

