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Observing in the Computational Basis

A n-qubit register can be found in a superposition of all the 2" possible bit strings:
00...0),]00...1),...,]11...1)

When we describe the state of a multi-qubit quantum memory register as a
superposition of its possible bit-string configurations, we say the state is
represented in the computational basis.

The most common measurement in quantum computing is to measure a set of
qubits “in the computational basis”, where the spin orientation of each qubit in the
guantum memory register is measured along an axis parallel to the z-axis of the
Bloch sphere, which is the axis passing through North and South poles.

Each qubit will be found to be aligned or anti-aligned with the z-axis, with “spin-up”
(i.e., in state |0)) or “spin-down” (i.e., in state |1}) respectively.



Complete Readout

Consider a 3-qubit quantum memory register that initially is in the state:

W) = €0|000) 4+ ¢1]001) 4 ¢5]010) 4 ¢3]011) 4 c4]100) + ¢5[101) + 6| 110) 4+ ¢7|111)

where [co|? + [e1]? + |c2]® + |e3]2 + |cal® + les|? + [cs]* + |7 = 1

For convenience imagine labeling the leftmost qubit A, the middle qubit B, and the
rightmost qubit C. The probabilities of obtaining the eight distinct triples of values
when three qubits are read in the computational basis are:

Qubit A Qubit B Qubit C Probability
10) 0) 10) col?
10) 0) 1) c1]?
10) 1) 10) |c2)?
10) ) 1) 3]
1) 0) 10) cs]?
1) 0) 1) 5|2
1) 1) 10) 6|
1) 1) 1) e7]?
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Partial Readout
Consider again the 3-qubit quantum memory register that initially is in the state:

1U) = ¢0|000) 4+ ¢1]001) + ¢5]010) 4 ¢3]011) 4+ c4]100) + ¢5[101) + ¢6|110) + ¢7]111)

Suppose we measure only the middle qubit, B, and find it to be in state |1)

This measurement projects the qubits into a form that constrains the middle qubit to be|l),
but leaves the other 2 qubits indeterminate (since neither qubits A nor C were measured).
Moreover, the resulting state must still be properly normalized. Hence, after the

measurement, the state of the 3-qubit memory register is:

2010} +¢3|011) +c6|110)+c7[111)
V0o 2+le3 2+ es |2 +e7 |2

After a partial measurement survive only terms from the initial state of the register that
contain the measured qubit state. Bit strings without the measured qubit state are
omitted.



Alternative Bases

A basis for an n-qubit quantum memory register is any complete orthonormal set of
eigenstates where any n-qubit state can be written as a superposition of states
taken from this set only .

Typical bases for 2-qubit quantum memory register.

Basis Eigenstates

=

Rotations of the single 9" Rotated 0) = cos 010} + sin6]1)

computational basis states [1) =cosf|0) —sinb|1)
are unitary transformations

Diagonal 1
of the computational basis HEond /) f 0y +11)
states |0) and |1). IN) = 7 (10) = 11))

Chiral 1) = 7 (10) +i]1))

= ) = J5(10) = 1))
The Bell basis is defined Bell 1Boo) = —=(]00) + [11))
over entangled 2-qubit ‘F
[Bo) = 75 (100) —[11))
By = 5(I01) —[10))




How the eigenvectors in the two bases are related?

Rotations in computational basis are represented with a unitary operator: [/ — Z b ) {a|
k

An operator, U, of this form is a unitary matrix that induces the following mapping between the
“a”-basis (column vector) and the “b”-basis (column vector): |b) = Ula;) |

‘[‘)-2> =U|£.’i’2> |£'?J;)=[j|”j)
' (b= <(fj|U-i.

|bon) = Ulaon)

Thus a given state |1/) can be written in either the “a”-basis or the “b”-basis as:
V) Zam, = Bilb))
j

o = {a;i )
where the amplitudes a; and 6; are given by the inner products: { {
pi=1(bjly)
6; amplitudes can be expressed in terms of a;amplitudes and the unitary matrix elements :
/ =1\

B = (bjly) = (bj] (Zm (ail ) ) = Z(b,.sm,o(a,wm: Y (ajlU M a) aily) =Y (U7 jiey

i i

and ij “b"-basis — Zﬂflbf UThﬁ)"ﬂ”—baSiS



Change of Basis for a State (vector) and for an Operator (observable)

A unitary transformation U between the Diagonal and computational bases for a state vector is:

I 1 I (1 I
= 1) {ak|= 12901+ N (L] = 10 DO+ —=(10) = [l = = (1 —1)

k

An observable for some property of an n-qubit system is represented by a 2" x 2" dimensional

Hermitian matrix: @ = @' and so the eigenvalues {4; }of © are real numbers for the set of its
. U'j . y .

eigenvectors {|¥i)}: Oi) = 2i|¥i)

Repeated measurements on several preparations of the state [1/) give an average value that

is always a real number: (O) = (v|Oyr)

where|1Yr) and O should be described with respect to the same basis.

Change of Basis for an Operator (@, given initially in the “a”-basis, is expressed by a “similarity
matrix transformation” in the “b”-basis : +
(br|O|bg)= E E (U Dkm OmnUne

m

An operator in the “@”-basis transforms into the

. 1) L ] " ? TRt e /
“b”-basis with a similarity matrix transformation: Opbasis = U+ Ovgbasis - U



Observing in an Arbitrary Basis

A given quantum state does not have a unique interpretation: any state—even the
state of a quantum memory register—can be pictured as different superposition
states over different bases. - "

Measuring the state of a qubit
initially in state a|0) +b[1) along
an axis passing through states
[vr) and |Y+) corresponds  to
measuring the qubit in the basis

U, 1)),

[0

,~l"'--
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Problems with Solutions

Problem #1 Let {|0), [1), ..., |n— 1) } be an orthonormal basis in the Hilbert space C™. Is
n—2
) = \._1-/_[2 IV ®@|7+1)+|n—1)®|0)) independent of the chosen orthonormal basis?
n
j=0
Solution Consider the special case R2. Let |0) = ( :;) . 11} = ([1})
(0
1 1 0 1 0 1 1 1
Thus |w)=v—,—§(ﬂ)®(1)+ﬁ(1)®<) N R
0
Now let
1 1 1
o=>(1) mw=5(24)
Then

1
ORI HE RO

-1

Thus, |¢) depends on the chosen basis.
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Problems with Solutions

Problem #2 In the product Hilbert space C? ® C? the Bell states are

V2

v-) = -—(|[l) ®]1) - [1) @ |0)) Here, {]0), |1) } is an arbitrary orthonormal basis in C2,

V2
Let |0) — e cost |1y = (“E“"" 51115') (i) Find |®*), [®), |¥*), and |¥~) for this basis.
N sin f cos ¢ (ii) Consider the special case when ¢ = 0 and # = 0.

Solution e2i® ez_"'i' cos(26) —e2% 5in(20)
1 1 e'? sin(26) s+ 1 | e'*cos(20)

0
. . S P
(i) We obtain [27) = 21 0 j@7) = /2 | esin(26) (2T) = V2 | €'?cos(26)
[1.:h 1 — cos(26) J sin(26)
E'l

_ 1
=) = 72 | —e® (ii) If we choose ¢ = 0 and § = 0 which simply means we choose the
0 /standard basis for |0) and {1} (i.e., [0) = (1 0)T and |1} = (0 1)7), we find

o - 1 B o
& }—{{Iﬂ}t‘alﬂ)ﬂl}@ﬂ}), |97) = —=(|0) @0} — 1) @ 1)) [¥T) = f(lﬂ)®ll>+|1>®lﬂ}}

1 1 0 0
1 [0 1 0 1 |1 _ 1 1
¢y = — DT = — oty = ) = —
1 ~1 0 Ny
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Problems with Solutions

Problem #3 Let A and B be two n x n matrices over C. If there exists & non-singular

n X n matrix X such that 4 = XBX 1 then A and B are said to be similar matrices.

Show that the spectra (eigenvalues) of two similar matrices are equal.

Solution We have det(A4 — AL,) =det(XBX ' — XA, X 1) =det(X (B — A,) X 1)

= det{X)det(B — Afn}det[X‘l)= det(B — AlL,)
Problem #4

1P
Let [) = (Egiiﬂﬁg)whem 6,0 € R. (1) Find p := [9)($]. (ii) Find trp. (iit) Find p?

Solution (i) Since (Y| = (e7 cos@,sinf) we obtain the 2 x 2 matrix

o= )] = ( cos? e”sinﬂmsﬂ)

e *®sinf cos 6 sin® #
(ii) Since cos? 8 + sin?# = 1 we obtain from (i) trp = 1.

(iii) We have p* = ({9)(y])* = [} ) (%] = |) (] = p since (Y[¢) = L.

The density operator p or density matrix is a positive semidefinite operator on a Hilbert space
with unit trace. An operator is positive semidefinite if it is hermitian and none of its real
eigenvalues are less than zero.
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Problems with Solutions - Density Operators

The state of a quantum-mechanical system is characterized by a density operator p with trp = 1.

The expectation value of an observable A, determined in an experiment as the average value
<A> is given by <A> = tr(A p).

Problem #5 A mixed state is a statistical

mixture of pure states, i.e., the state is described by pairs of probabilities

and pure states. Given a mixture { (p1, |[¥1)),---, (Pn,|¥n)) } we define its
density matriz to be the positive hermitian matrix

p=> pjlvi);l
7=1

where the pure states |1;) are normalized (i.e., (¥;]¢;) = 1), and p; = 0

for 7 =1.2,...,n with
b
> pi=1.
j=1

(i) Find the probability that measurement in the orthonormal basis

{lkl}r" . rlkn)}

will yield |k;).

(ii) Find the density matrix py when the mixture is transformed according
to the unitary matrix U/,



Problems with Solutions - Density Operators

Solution #5 (i) From the probability distribution of states in the mixture we have for
the probability P(k;) of measuring the state |k;) (j =1,2,...,n)

P(ks) =Y _wlk;ln)l® = pilk; ) (wilk; = (kjlolks)-
=1 (=1

(ii) After applying the transform U to the states in the mixture we have
the new mixture { (p1, Ul ), ..., (pn, Ultn)) }, with the density matrix

pu =y p;iUl;) (¥5]U

Jj=1
=U [ Y pslei) ) | U

j=1

—UpU™.
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Problems with Solutions - Density Operators

Problem#6 Let A and B be a pair of qubits and let the density matrix
of the pair be p 45, which may be pure or mixed. We define the spin-flipped
density matriz to be

pap = (0, ®0oy)paploy @ oy)
where the asterisk denotes complex conjugation in the standard basis

{[0y®]0), [0)@]1), [1)®]0), [1)@I1)} and gy:(g Bi)

Since both pag and pap are positive operators, it follows that the prod-
uct pappas, though non-hermitian, also has only real and non-negative

eigenvalues. Consider the Bell state ) = %( 0) @ [0) + 1) @ [1))
2
and p := [} {¢)|. Find the eigenvalues of pagpas.
Solution
1 0 01 0 0 0 -1
Since p= W)Wl =5 [ ) 0 0 0| webaves=p. Ao @0, = 0 91 O
1 0 0 1 -1 0 0 O

Thus g = p and pp = p with eigenvalues 1, 0, 0, 0.
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