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Spectral Theorem for real symmetric matrices 

Let A be an n × n symmetric matrix with real entries. Then it has n real eigenvalues and one 
can choose an orthonormal eigenbasis                              . Using this basis to form the matrix:      
                             , the matrix A is diagonalizable as:               , where the diagonal matrix D 
contains the eigenvalues in the diagonal: 
 
 
 
 
 
For any vector u:                                                                           or  
 

Note that the matrix          is the orthogonal projection onto the vector  . The action of a real 

symmetric matrix is that it projects the given vector into the eigendirections, scales the 

projected vectors by the corresponding eigenvalues, then adds up these scaled vectors. 

MAKE SURE YOU TRULY UNDERSTAND IT. This is one of the most important tool 

whenever linear algebra is applied. In particular it enables us to define functions of 

matrices, such as eA, sin(A) etc. 
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Spectral Theorem 

For example:                                                                        

, then : 

, then : 
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Example on the spectral decomposition of a matrix 

Then  
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Example on the spectral decomposition of a matrix 
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Example on the spectral decomposition of a matrix 
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Evolving a Quantum Memory Register: Schrödinger’s  Equation 

Our working assumption has been that the instantaneous state of a quantum memory register, 
|ψ(t)  , holds the instantaneous state of the quantum computation.  
But how does this state evolve with time, and how can we control this evolution in quantum 
computation? 

Schrödinger’s equation is a linear first order deterministic partial differential equation that 
involves the instantaneous state of the quantum memory register             : 

      is a time independent Hermitian matrix, called the Hamiltonian (the observable for the  
total energy of the system),  

      is a constant equal to Planck’s constant divided by 2π. 

All the details of a particular physical system are into the operator H—the Hamiltonian.  
So what does this Hamiltonian mean exactly? 

Normal operators A: represent physical properties and their eigenvalues are the possible 
outcomes when the physical property is measured:       

A linear operator A is said to be 
 Hermitian if                 and Unitary  if                               , the identity operator                           
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Hamiltonians 

 Quantum observables are described by operators, represented as Hermitian matrices.  

 Eigenvalues are the allowed values for an observable of a Hermitian matrix.  

 Hamiltonian is the observable corresponding to the total energy of the system, and its 

eigenvalues Ei are the possible values from measurements. 

      is a 2n×2n dimensional Hermitian matrix and there is always some basis (the energy 

eigenbasis {      }) in which     is a diagonal matrix: 

: 

: 
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Solution as a Unitary Evolution of the Initial State 

 As     is an Hermitian matrix, its matrix exponential                      is a unitary matrix.  

 A unitary matrix has the property that its inverse is equal to its conjugate transpose: 

 A unitary matrix is always invertible which means that the evolution it describes is 

reversible, i.e., there is no loss of information. 

 Thus, the closest classical analog to quantum computing is classical reversible computing. 

 If the Hamiltonian 

for the unitary evolution operator. For continuous evolution with respect to time t, the 

solution of Schrödinger’s equation cannot be represented in terms of a 1-parameter 

evolutionary group. Rather, a 2-parameter group U(t, s) is needed: ψ(t) = U(t,0)ψ(0), 

U(t, s) remains unitary for any s, t.  

Thus, all quantum operations are unitary. 

and U(t, s’)U(s’, s) = U(t, s) 
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Properties of Quantum Gates Arising from Unitarity 

    A matrix is unitary if:                      If U is unitary exhibits these properties: 

ensures that a quantum gate is logically reversible. 

ensure that if you start with a properly normalized 
quantum state and act upon it with a quantum gate, 
then you will end up with a properly normalized 
quantum state. There are no probability “leaks”.  

1) 

2) 

3) means that the constraint on the determinant can be satisfied with 
                                        The elements of a general unitary matrix are 
generically allowed to be complex numbers.  



11 

The no-cloning theorem 

The restriction of time evolution to unitary operators means that certain kinds of 

evolution are impossible. One impossible task is quantum cloning. 

Suppose we have a system in an unknown state       , and we wish to copy  it, i.e., to transform 

a second system starting in some standard state        into the same state        . Is there a unitary   

.   such that, for any state        :        

If this is true, then also for                     there  is           

Consider now a superposition state                                        By linearity,  

so                                                is a contradiction. Therefore, no such     exists. 

No-cloning theorem: quantum information, unlike classical information, cannot be copied. 

1) the state      of a system is not an observable. Given a quantum system, there is no way to 
tell in what state         it was prepared.  

2) If the state       is known, the state can be “copied” by preparing another system. But it is 
impossible to copy an unknown quantum state. 

3) Many techniques of classical information theory (such as protecting information by making 
redundant copies, or having a fanout gate from a single bit) are impossible in quantum 
information theory. 
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Computational Interpretation 

 A classical computer follows a LOAD-RUN-READ cycle: LOAD data into the machine, 

RUN a program using these data as input, and then READ out the result. 

 A quantum computer follows a PREPARE-EVOLVE-MEASURE cycle: PREPARE a 

quantum state, EVOLVE it on the quantum computer, and MEASURE the result. 

 In a classical computer you can only load one input at a time, in a quantum computer you 

can prepare exponentially many inputs in the same amount of time.  

 A classical computer can only run a computation on one input, a quantum computer can 

evolve a superposition of computations on all inputs in the same time.  

 A classical computer can only read one output, whereas a quantum computer can  

compute certain joint properties of all the answers to a particular computational problem 

in the time it takes a classical computer to find just one of the answers.  

 This gives quantum computers the potential to be much faster than any classical 

computer, even a state-of-art supercomputer. 


