[TapAdAANAN ETTeCcepyaaia

Eapivé Ecaunvo 2023-24
«Nnuarta lNpotutrou POSIX»

IHavayimtne Xatlnoovkac, Evetpdtiog I'aAAdomovAog

Outline

« POSIX Threads API

Thread management
Synchronization with mutexes
Deadlock and thread safety
Barriers

Condition variables

Exercises — Examples
Special topics (quick overview)
 Attribute objects

« Once-only initialization

« Thread-private data

Processes vs POSIX Threads

Processes POSIX Threads
Identifier pid_t pthread t
getpid() pthread_self()
Creation fork() pthread create()
Start exec()
Wait walit() pthread_join()
EXit exit() pthread_exit()

POSIX Threads (Pthreads)

Standardized C language threads programming
interface

- http://pubs.opengroup.org/onlinepubs/9699919799/

Header file:
#include <pthread.h>

Compilation
$ gcc -pthread -o hello hello.c

Execution
S ./hello

http://pubs.opengroup.org/onlinepubs/9699919799/

Spawning and Joining Threads

void *func(void *arqg)
{

sleep(1l);

return NULL;

}

int main(int argc, char * argvl[])

{
pthread t 1d[4];

for (long i = 0; 1 < 4; 1i++) {
pthread create(&id[i], NULL, func, NULL);
}

for (long i = 0;

i 4,; 14++) {
pthread join (1d[1i]

NULL) ;

<
(11,

}

return 0;

Creating and Joining Threads

long x=5;

void *func (void * arq)

{
long sec = *((long *)arqg);
sleep (x+sec);
return NULL;

int main (int argc, char * argvl])
{

pthread t 1df[4];

long af4];

for (long 1 = 0; 1 < 4; 1i++) {
ali] = 1i;
pthread create(&id[i], NULL, func, (void *) &ali1]);

for (long 1 = 0; 1
i

< 4; i++) |
pthread join (id[i]

, NULL) ;

1

d

return 0;

Synchronization

 Consider the following code
- next ticket Is a global variable initialized to O
« ticket Is alocal variable, private to each thread

ticket = next ticket++; /* 0 > 1 %/

* In the general case, this is equivalent to the following:
ticket = temp = next ticket; /* 0 */
++temp; /* 1 */
next ticket = temp; /* 1 */

Rl — next ticket (load)
ticket « R1 (store)
Rl —~ R1+1 (inc)

next ticket ~ Rl (store)

Execution with 2 Threads

Thread O Thread 1
tkt = tmp = n tkt; (0)
++tmp; (1)
n tkt = tmp; (1)

tkt = tmp = n tkt; (1)
++tmp; (2)
n tkt = tmp; (2)

ltime

Another Possible Case

Thread O Thread 1
tkt = tmp = n tkt; (0)

tkt = tmp = n tkt; (0)

++tmp; (1)
++tmp; (1)
n tkt = tmp; (1)
n tkt = tmp; (1)
|time

What we observe here is a race condition
The update of the shared variable is a critical section
and must be protected 9

Synchronization - Mutexes

« POSIX Threads include several synchronization
mechanisms
- Mutexes, Condition variables, Barriers, Reader-Writer locks,
Spinlocks, Semaphores
* A Mutex (Mutual Exclusion) is a mechanism that allows
multiple threads to synchronize their access to shared
resources (e.g. variables)

- A mutex has two states: locked and unlocked
- Only one thread can lock the mutex

- Once a mutex Is locked, any other thread that tries to lock
that mutex will suspend its execution, until the thread
unlocks the mutex

- At that point, one of the waiting threads acquires the mutex

and continues its execution N

Mutex Management

 Declaration and static initialization of a mutex:
pthread_mutex_t mymutex = PTHREAD_MUTEX_INITIALIZER;

» Declaration and dynamic initialization of a mutex:

pthread mutex t mymutex;

pthread mutex init (&mymutex, NULL) ;

 Locking (acquiring) the mutex:

pthread mutex lock (&mymutex);

» Unlocking (releasing) the mutex after the critical section:

pthread mutex unlock (&mymutex) ;

11

Dynamic Allocation of Mutex

Pointer to mutex

pthread mutex t *mymutex;

Memory allocation:

mymutex = (pthread mutex t *)
malloc (sizeof (pthread mutex t));

Mutex intialization:
pthread mutex init (mymutex, NULL);

Locking and unlocking as before
Destroying mutex:

pthread mutex destroy (mymutex) ;

12

Usage
#include <pthread.h>

pthread mutex t mutex PTHREAD MUTEX INITIALIZER;

double global sum = 0.0;

vold *work(void *arg)

{

pthread mutex lock (&mutex);
global sum += local sum;
pthread mutex unlock (&mutex) ;

13

Check and Lock

int pthread mutex trylock(pthread mutex t *m);

* Allows a thread to try to lock a mutex
* |f the mutex is available then the thread locks the mutex

« If the mutex is locked then the function informs the user by
returning a special value (EBUSY)

« This approach allows for implementations of spinlocks

while (pthread mutex trylock (&mutex) == EBUSY)
/*sched yield () */;

14

Mutexes - Recap

#include <pthread.h>
#include <stdlib.h>

pthread mutex t static mutex = PTHREAD MUTEX INITIALIZER;
pthread mutex t *dynamic mutex;
dynamic mutex = (pthread mutex t ¥*)

malloc (sizeof (pthread mutex t));
pthread mutex init (&dynamic mutex, NULL) ;

pthread mutex destroy(&dynamic mutex) ;
free (dynamic mutex);

Example: Thread Number

#include <pthread.h>

pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;
int temp 1d = 0;

vold *work(void *arg)

{

int id;

pthread mutex lock (&mutex);
id = temp 1d;

temp id = temp 1d+1;

pthread mutex unlock (&mutex) ;

16

Example: try lock

pthread mutex t mutexl = PTHREAD MUTEX INITIALIZER;

vold * func(void *arg) {
int res;

res = pthread mutex trylock(&mutexl); /* EBUSY */;
return 0O;

int main() {
pthread t t;
pthread mutex lock (&mutexl);
pthread create(&t, NULL, func, NULL);
sleep (2);
pthread mutex unlock (&mutexl) ;
pthread join(t, NULL);
return 0;

Compute Pi - Seqguential Version

long num steps = 100000;
double step;

int main ()
{
double x, pi, sum = 0.0;
step = 1.0/ (double) num steps;
for (int 1=0; 1 <num steps; 1++) {
x = (i-0.5) *step;
sum = sum + 4.0/ (1.0+x*x);
}

pli = step * sum;

return 0;

POSIX Threads Version

#fdefine NUM THREADS 2
pthread t thread[NUM THREADS];
pthread mutex t Mutex;

long num steps = 100000;
double step;

double global sum = 0.0;

void *Pi (void *arg) {
long start;
double x, sum = 0.0;

start = (long) (*(int *) argqg);
step = 1.0/ (double) num steps;

for (long i=start; i<num steps;
1+=NUM THREADS) {
x = (1+0.5) *step;
sum = sum + 4.0/ (1.0+x*x);
}
pthread mutex lock (&Mutex);
global sum += sum;
pthread mutex unlock (&Mutex) ;

return 0;

int main ()

{

double pi;
int Arg[NUM_THREADS];

for (int 1=0; i<NUM_THREADS; i++)
Argl[i] = 1i;

pthread mutex init (&Mutex, NULL);
for (int 1=0; i<NUM_THREADS; i++4)
pthread create (&thread[i], NULL,
Pi, &Arglil]);

for (int 1=0; 1<NUM THREADS; 1i++)
pthread join(thread[i], NULL);

pi = global sum * step;

return 0;

19

Deadlocks

« Deadlock can occur when multiple mutexes are not locked in
the same order.

 The threads cannot continue their execution:

Thread O Thread 1
pthread mutex lock (&mutl) ; pthread mutex lock (&mut2) ;
pthread mutex lock (&mut2) ; pthread mutex lock (&mutl) ;

 Deadlock can also occur if a mutex Is locked twice
(recursively) by the same thread

pthread mutex lock (&mutl) ;
pthread mutex lock (&mutl) ;

20

Thread Safety

A function is thread-safe if it can be called safely at

the same time by multiple threads

Reentrant function: can have multiple concurrent
active calls, at different points, without side-effects

Threa-safe function: reentrant or protected with
mutual exclusion

Functions that use static variables are not thread-
safe, e.q.. rand (), drand48 ()

21

Solutions

1. Use a mutex inside the function

« provides an easy but inefficient solution due to
the serialization of the code

- this is the case for rand(), drand48()

2. Use static (per thread) data as function arguments
(e.g. strtok_r)

* not convenient, exposes the internal
Implementation of the function, requires code
rewriting

3. Use thread private data (pthread key t)

* Every thread has its own private data that other
threads cannot access

Example 1

* rand_r: thread-safe version of rand()

— randp is assigned a number from 0 and RAND_MAX
— returns O on success

#include <pthread.h>
#include <stdlib.h>

int rand r(int *ranp) {
static pthread mutex t = PTHREAD MUTEX INITIALIZER;
int error;
if (error = pthread mutex lock(&lock))
return error;
*ranp = rand() ;
return pthread mutex unlock (&lock);

23

Example 2

» drand48() vs erand48()

- "return non-negative, double-precision, floating-point
values, uniformly distributed over the interval [0.0, 1.0]
- http://pubs.opengroup.org/onlinepubs/7908799/xsh/drand48.html

srand48 (10); // initialization
double xi1i = drand48 () ;
double yi = drand48();

unsigned short buf[3];// random stream

buf[0] = 0; buf[l] = 0; buf[2] = 10; // initialization
double x1 = erand48 (buf);

double yi = erand48 (buf);

24

http://pubs.opengroup.org/onlinepubs/7908799/xsh/drand48.html

Barriers

» Barrier: synchronization mechanism that make
sures all calling threads in a program

 No thread can cross the barrier until all the threads
have reached it

thread O thread 1l thread 2

l arrival
I I I departure

time

«———-———-———-

25

Barriers

int pthread barrier init (pthread barrier t * bar,
const pthread barrierattr t*attr,
usigned 1int count);

int pthread barrier wait (pthread barrier t *bar);

int pthread barrier destroy(pthread barrier t *bar);

« pthread barrier_t: data type
* count: number of threads that must call the barrier

26

Barrier Example

pthread barrier t bar;

void *func(void *arqg)

{

int

int id = *((int *)arg);
printf ("Hello world from thread %d!\n", id);

pthread barrier wailt (&bar);
sleep (id) ;

printf ("Goodbye world from thread %d!\n", id);

return NULL;
main (int argc, char * argv][])

pthread barrier init (&bar, NULL, 4);

27

Condition Variables

Synchronization mechanism that allows multiple
threads to wait on a condition and resume their
execution after some time

Mutexes protect critical code but condition variable
protect a more general operation

A thread waits on a condition variable until it I1s
informed (by the variable) that it can continue

Another (running) thread signals the condition
variable, allowing other threads to continue

Every condition variable, as shared data, Is
associated with a specific mutex

28

Condition Variables

* No need for continuous checking of data

* A thread that modifies the values of data also informs
the other threads through the condition variable

- Example: producer-consumer scheme using data
gueue

— The consumer thread extracts and processes
elements of the queue while this is not empty,
otherwise the thread suspends its execution

— The producer thread adds elements to the queue
and informs, through the condition variable, the
consumer thread

— The Interaction is based on the number of elements
In the queue

29

Declaration and Initialization

int pthread cond init (pthread cond t * cond,
const pthread condattr t *attr);

pthread cond t: data type

Static initialization:
pthread cond t condition = PTHREAD COND INITIALIZER;

Dynamic initialization:
pthread cond init (&condition, NULL);

There must be always an associated mutex

30

Waiting

int pthread cond wait (pthread cond t *condition,
pthread mutex t *mutex);

* The thread suspends its execution until the condition
variable is sighaled

 The thread must have locked the associated mutex

« The thread is suspended and the mutex is unlocked
automatically in order to be used by other threads

« When the condition variable is singled and the suspended
thread wakes up, it automatically locks the mutex

31

Signaling

int pthread cond signal (pthread cond t *cond);

int pthread cond broadcast (pthread cond t *cond);

- pthread cond_signal: a thread informs a single thread that
waits on the condition variable

- pthread _cond_broadcast: a thread informs all the threads
that wait on the condition variable

* The signaling thread has usually locked the associated
mutexX. In that case, it must release the mutex in order to
allow pthread cond_wait to return

32

Usage

A thread locks the associated mutex m

The thread checks the condition and decides if it can
continue or not

If it can continue (the condition Is true):
1. The thread executes its operation and
2. Unlocks the mutex

If it cannot continue (the condition is false):

1. The thread suspends itself by calling pthread _cond_wait(&c,&m),
and the mutex is automatically unlocked (by the system)

2. Another thread sets the condition to true and calls
pthread _cond_signal(&c)

3. The thread wakes up with the mutex locked by itself and executes its
operation

4. The thread unlocked the mutex when it completes its operation

33

T1:
T2:
T3:
T4 :
T5:
T6:
T7:
T8:
TO:

Example 1

Thread O

pthread mutex lock (&m) ;
while (!condition_ok)

while (pthread cond wait(&c,é&m)) ;

go_ahead and do it();

pthread mutex unlock (&m) ;

Thread 1

pthread mutex lock (&m) ;
condition ok = TRUE;
pthread cond signal (&c);

pthread mutex unlock (&m) ;

Example 2

Thread 0O Thread 1
for(...)
———————————— pthread mutex lock (&mut) ;
pthread mutex lock (&mut) ; while (count<N) {
count++?. B pthread cond wait(&cond, &mut);
if (count== N) { }
/* Wake-up thread 1 */ pthread mutex unlock (&mut) ;

pthread cond signal (&cond); ------------

}
pthread mutex unlock (&mut) ; //Do work

/ /Do work
}

Example 3
Threads 0,...,N-1 Thread N

for(...)

____________ pthread mutex lock (&mut) ;

pthread mutex lock (&mut) ; while (count<N) {
count++; pthread cond wait(&cond, &mut);
if (count== N) { }

/* Wake-up thread N */ pthread mutex unlock (&mut) ;

pthread cond signal (&cond); ------------

}
pthread mutex unlock (&mut) ; //Do work

/ /Do work
}

Example 4

Thread O

for(...)

pthread mutex lock (&mut) ;
count++;
if (count== N) {
/* Wake-up threads 1..N */
pthread cond broadcast (&cond) ;
}

pthread mutex unlock (&mut) ;

/ /Do work
}

Thread 1,2,...,N

pthread mutex lock (&mut) ;
while (count<N) {
pthread cond wait (&cond, &mut) ;

}

pthread mutex unlock (&mut) ;

Comments

« Condition variables are used for signaling and not
mutual exclusion

* The condition must be always checked if it Is true or
not
— Interrupted wake-ups: Before pthread cond_wait returns

with the mutex locked, another thread locks the mutex
and changes the condition

— Loose conditions: an approximation of the real condition
(e.g. “there might be available work”)

— False wakeups: pthread _cond_wait returns but the
condition variable has not been signaled (e.g. in
multicore systems)

38

Condition Variables

Condition variables can be used without a condition
The mutex must be locked and released before and after
wait(), respectively

Example:
pthread mutex lock (&mut) ;
pthread cond wait(&cond, &mut);

pthread mutex unlock (&mut) ;

39

Condition Variables - Extension

int pthread cond timedwait (&condition, &mutex,
(struct timespec *)expiration) ;

 Waits on a condition variable but with time constraint. If timeout occurs,
the function returns ETIMEDOQUT.

struct timespec timeout;
/* Wait on the condition variable for 2 seconds */
timeout.tv sec = time (NULL) + 2;

timeout.tv nsec = 0;

pthread cond timedwait (&condition, &mutex, &timeout);

40

Fibonacci (1/3)

/* version 1%/
int fib(int n)
{
i1f (n <= 1) return n;
else return fib(n-1) + fib(n-2);

/* version 2%/
volid fib(int n, int *res)
{
int rl, r2;
if (n <= 1) *res = n;
else {
fib(n-1, &rl);
fib(n-2, &r2);
*res = rl + r2;

41

Fibonacci (2/3)

/* version 3%/
struct fib arg {
int n;
int res;

s

volid fib(struct arg *a)
{
struct fib arg al, az;
int rl, r2;
if (a->n <= 1) a->res = a->n;
else {
al.n = a->n-1;
az2.n = a->n-2;
fib(&al);
fib(&a2);

a->res al.res + a’Z2.res;

42

Fibonacci (3/3)

/* version 4*/
void *fib (void *arg) {

struct fib arg *a = (struct fib arg *) arg;

struct fib arg al, aZz;
pthread t tl, t2;

pthread mutex lock (&nthreads mutex);

nthreads++;

pthread mutex unlock (&nthreads mutex);

if (a->n <= 1) {

a->res = a->n;
}
else {
al.n = a->n-1;
a’2.n = a->n-2;

pthread create(&tl, NULL, fib,
pthread create (&t2, NULL, fib,
pthread join(tl, NULL);
pthread join(t2Z2, NULL);

a->res = al.res + aZ2.res;

}
return NULL;

43

Execution Order (1/2)

#define N 10

void *routine (void *arg) {
int id = (int) arg;

printf ("Hello from thread:%d\n", id);

return 0;

int main () {
int i;
pthread t t[N];
int a[N];
for (1 = 0; 1 < N; 1i++) {
ali] = i;

pthread create(&t[i], NULL,
}

for (1 = 0; 1 < N; i++)
pthread join(t[i], NULL);

return 0;

routine,

(void *)&al[il);

44

Execution Order (2/2)

pthread mutex t m[N]; /* initialized in main */
pthread cond t c[N]; /* initialized in main */

void *routine (void *arqg)
{

int id = *((int *) arg;)

if (id > 0) |
pthread mutex lock(&m[id]) ;

pthread cond wait (&c[id], é&m[id]);
}

printf ("Hello from thread:%d\n", id);

if (id > 0) pthread mutex unlock(&m[id]) ;
i1f (id < N) pthread cond signal (&c[id+1]);

4

return 0;

Recursive Locks (1/4)

int othr init nest lock(othr nest lock t *lock);
int othr destroy nest lock(othr nest lock t *lock);
int othr set nest lock(othr nest lock t *lock);

int othr unset nest lock(othr nest lock t *lock);

typedef struct {
pthread mutex t lock; /* real lock */
pthread mutex t ilock; /* data lock */
pthread cond t cond;
int count;
Othr_t owner;

} othr nest lock t;

46

Recursive Locks (2/4)

int othr init nest lock(othr nest lock t *lock)
{
pthread mutex init (&lock->ilock, NULL) ;
pthread mutex init (&lock->lock, NULL);
lock->count = 0;
pthread cond init (&lock->cond, 0);
return (0);

int othr destroy nest lock(othr nest lock t *lock)
{

pthread mutex destroy(&lock->lock);

pthread cond destroy(&lock->cond);

pthread mutex destroy(&lock->ilock);

return (0);

47

Recursive Locks (3/4)

int othr set nest lock(othr nest lock t *lock)
{
pthread mutex lock(&lock->1ilock);
if (pthread mutex trylock(&lock->lock) == 0) /* lock it */
{
lock->owner = pthread self(); /* Get ownership */
lock->count++;

}

else
if (pthread equal (lock->owner, pthread self())) /* mine */
lock=->count++;
else /* someone else */

{
while (pthread mutex trylock(&lock->lock))
pthread cond wait (&lock->cond, &lock->ilock);
lock->owner = pthread self();
lock=>count++;
}
pthread mutex unlock(&lock->ilock);
return (0);

48

Recursive Locks (4/4)

int othr unset nest lock(othr nest lock t *lock)

{

pthread mutex lock(&lock->ilock);

1f (pthread equal (lock->owner,pthread self()) && lock->count > 0)
{

lock->count--;
if (lock->count == 0)
{
pthread mutex unlock (&lock->1lock);

pthread cond signal (&lock->cond) ;
}

}

pthread mutex unlock(&lock->ilock);
return (0);

49

Special topics

* Attributes objects

— Thread attributes

— Mutex attributes
« One-time Initialization
» Thread private data

50

Attribute objects

Thread creation and mutex, barrier and condition variable
initialization routines had the second argument equal to
NULL (so far)

This argument is a pointer to attribute object
NULL corresponds to the default attribute value

Attribute object: some kind of private data structure (like
C++)

The members of the object can be accessed through
appropriate routines, e.g.:

pthread attr getstacksize
pthread attr setstacksize

o1

Thread Attributes

Declaration, initialization and destruction of a thread attribute
object

pthread attr t attr;

int pthread attr init(&attr);

int pthread attr destroy(&attr);

Detach state of thread
int pthread attr getdetachstate(&attr, (int *) &ds);
int pthread attr setdetachstate(&attr, (int) ds);

PTHREAD CREATE JOINABLE: joinable thread
PTHREAD CREATE DETACHED: daemon thread

52

Thread Attributes

« Stack size of the thread, minimum IS PTHREAD _STACK_MIN
int pthread attr getstacksize (&attr, (size t *) &ss);

int pthread attr setstacksize (&attr, (size t) ss);

- Stack of a thread, allocated explicitly (e.g. malloc)
int pthread attr getstackaddr (&attr, (void **) &sa);

int pthread attr setstacksize (&attr, (void *) sa);

53

Mutex Attributes

« Declaration, initialization and destruction of a mutex attribute
object
pthread mutexattr t attr;

int pthread mutexattr init (&attr);
int pthread mutexattr destroy (&attr);

* Mutex types
int pthread mutexattr gettype (&attr, (int *) &type);
int pthread mutexattr settype (&attr, (int) type);

- PTHREAD MUTEX NORMAL: faster implementation

- PTHREAD MUTEX RECURSIVE: can be locked several times by the
same thread

— PTHREAD MUTEX ERRORCHECK: for debugging
— PTHREAD MUTEX DEFAULT: usually the first one above

54

Once-Only Initialization

Data initialization (e.g.. mutexes) within main()

Software libraries do not have this option

A boolean variable that is set when the initialization has
been performed is enough for single-threaded applications
Static initialization of mutexes does not cause any issues
Dynamic initialization of mutexes requires pthread _once

pthread once t once control = PTHREAD ONCE INIT;
int pthread once (pthread once t *once control,
void (*init routine) (void));

Any thread can call the pthread_once function

The associated variable is first checked, and the initialization
routine is then called

Any other thread waits for the completion of the initialization
routine

55

Once-Only Initialization

pthread once t once block = PTHREAD ONCE INIT;
pthread mutex t mutex;

/* Initialization routine */

void once 1init routine (void)
pthread mutex init (&mutex, NULL) ;

}

/* Thread start routine that calls pthread once */
void *thread routine (void *arg) {
pthread once (&once block, once init routine);

int main() {

pthread create(&t, NULL, thread routine, NULL);

pthread once (&once block, once init routine);

56

Thread private data

Static variables, declared in a file or function, can be accessed
by all threads

Only the register values are private to a thread. Even its stack
can be accessed by other threads

Goal: maintain the value of a variable between calls of different
routines on a particular thread

Creation and destruction of key for management of thread
private data:

pthread key t key;
int pthread key create(pthread key t *key,

void (*destructor) (void *));
int pthread key delete(pthread key t key);

Access of key values (set, get):

int pthread setspecific(pthread key t key, const void *value);
vold *pthread getspecific(pthread key t key);

57

pthread key t key;

Thread private data

pthread once t key once = PTHREAD ONCE INIT;

void once routine (void) {

pthread key cre
}

void routine () {
int *value = pt

ate (&key, NULL);

hread getspecific(key);

void *func(void *arg) {
int id = *((int *)arqg);

int *value;

pthread once (&key once, once routine);

value = malloc(sizeof (int)) ;

*value = 1d;

pthread setspecific(key, value);

routine () ;
return NULL;

References

* Advanced Programming in the Unix Environment,
W. Richard Stevens

* Programming with POSIX Threads, David R.
Butenhof

* WWWwW.openmp.org

* POSIX threads tutorial at LLNL, Blaise Barney
* https://computing.linl.gov/tutorials/pthreads/

59

http://www.openmp.org
https://computing.llnl.gov/tutorials/pthreads

	Slide 1: Παράλληλη Επεξεργασία
	Slide 2: Outline
	Slide 3: Processes vs POSIX Threads
	Slide 4: POSIX Threads (Pthreads)
	Slide 5: Spawning and Joining Threads
	Slide 6: Creating and Joining Threads
	Slide 7: Synchronization
	Slide 8: Execution with 2 Threads
	Slide 9: Another Possible Case
	Slide 10: Synchronization - Mutexes
	Slide 11: Mutex Management
	Slide 12: Dynamic Allocation of Mutex
	Slide 13: Usage
	Slide 14: Check and Lock
	Slide 15: Mutexes - Recap
	Slide 16: Example: Thread Number
	Slide 17: Example: try lock
	Slide 18: Compute Pi - Sequential Version
	Slide 19: POSIX Threads Version
	Slide 20: Deadlocks
	Slide 21: Thread Safety
	Slide 22: Solutions
	Slide 23: Example 1
	Slide 24: Example 2
	Slide 25: Barriers
	Slide 26: Barriers
	Slide 27: Barrier Example
	Slide 28: Condition Variables
	Slide 29: Condition Variables
	Slide 30: Declaration and Initialization
	Slide 31: Waiting
	Slide 32: Signaling
	Slide 33: Usage
	Slide 34: Example 1
	Slide 35: Example 2
	Slide 36: Example 3
	Slide 37: Example 4
	Slide 38: Comments
	Slide 39: Condition Variables
	Slide 40: Condition Variables - Extension
	Slide 41: Fibonacci (1/3)
	Slide 42: Fibonacci (2/3)
	Slide 43: Fibonacci (3/3)
	Slide 44: Execution Order (1/2)
	Slide 45: Execution Order (2/2)
	Slide 46: Recursive Locks (1/4)
	Slide 47: Recursive Locks (2/4)
	Slide 48: Recursive Locks (3/4)
	Slide 49: Recursive Locks (4/4)
	Slide 50: Special topics
	Slide 51: Attribute objects
	Slide 52: Thread Attributes
	Slide 53: Thread Attributes
	Slide 54: Mutex Attributes
	Slide 55: Once-Only Initialization
	Slide 56: Once-Only Initialization
	Slide 57: Thread private data
	Slide 58: Thread private data
	Slide 59: References

