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Teaching Quote

“Those who can, do; those who can’t, teach”

From George Bernard Shaw's Man and Superman

“Tell me and I forget, teach me and I may remember, 

involve me and I learn.”
Benjamin Franklin



OUTLINE

Class Information

What and Why High Performance Computing (HPC) ? 

Overview of

Hardware for HPC

Performance 

Applications

Programming models (what we will see)



23.2 - Introduction

01.3 - Parallel architectures, Compilation 

08.3 – Multithreading, POSIX Threads

15.3 - OpenMP I (intro)

22.3 - OpenMP II (how it works)

29.3 - OpenMP III (tasks) - Project Introduction

05.4 - Roofline Model, Memory

12.4 - SIMD

19.4 - MPI I (intro)

26.4 - MPI II (asynchronous communication)

03.5 -

10.5 -

17.5 - MPI + OpenMP

24.5 - GPUS + CUDA

31.5 - Recap 

Course schedule (tentative)



Books

Εξάμηνο 6 - Εαρινό

Επιλογές Συγγραμμάτων:

• Βιβλίο [12532275]: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΛΛΗΛΗΣ 
ΕΠΕΞΕΡΓΑΣΙΑΣ, ΣΤΕΛΙΟΣ ΠΑΠΑΔΑΚΗΣ, ΚΩΣΤΑΣ ΔΙΑΜΑΝΤΑΡΑΣ

• Βιβλίο [50656351]: ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΑΡΑΛΛΗΛΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ, PETER S. PACHECO

Πρόσθετο Διδακτικό Υλικό:

• Βιβλίο [320182]: ΠΑΡΑΛΛΗΛΑ ΣΥΣΤΗΜΑΤΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ, ΒΑΣΙΛΕΙΟΣ ΔΗΜΑΚΟΠΟΥΛΟΣ

READING MATERIAL 

See Class Website

Parallel Programming for Science and Engineering, Victor Eijkhout:

https://web.corral.tacc.utexas.edu/CompEdu/pdf/pcse/EijkhoutParallelProgramming.pdf

Introduction to Parallel Programming: 

http://www-users.cs.umn.edu/~karypis/parbook/

https://web.corral.tacc.utexas.edu/CompEdu/pdf/pcse/EijkhoutParallelProgramming.pdf
http://www-users.cs.umn.edu/~karypis/parbook/


https://eclass.upatras.gr/courses/CEID1057/

Class Website



Exercises

Goal of the exercises are to help you become familiar with 

the material discussed in the class

Exercise session:

solution of the previous exercise: discussion and 

feedback

introduction of the new exercise

The solution of the exercises will be available one week after 

their introduction



Exam

GRADING: 

MAX(EXAM,  0.8*EXAM + 0.2*PROJECT)



Why powerful computers are parallel

4

circa 1991-2006

all (2007 - )

CREDIT: J. Demmel



Parallel Computing

• Serial Computing:

• Problem has a series of 

instructions

• Executed sequentially, one at 

a time

• Parallel Computing

• Problem is split into sub-

problems that can be solved 

concurrently

• Each subproblem runs 

sequentially (as above) on a 

separate machine/processor

• Some control/coordination 

mechanism needed



Computer layout (in a nutshell)

• CPU

• does the computations

• contains multiple cores (usually)

• each core works mostly independently,

copy of a single core with global coordination

• contains several levels of caches to 

speed up reading/writing to memory

(very relevant for high performance computing)

• Memory

• stores data for computations

• shared among the cores of the CPU (or multiple CPUs in a compute node)

• Network: connect compute nodes and connect to outer world

• Input/Output: displays, hard-drives, etc

Intel Core i7 CPU

picture source: legitreviews



Massively Parallel Computing

Sequoia IBM BlueGene/Q supercomputer (at Lawrence Livermore National Laboratory)

source:computing.llnl.gov

Components of a Supercomputer (roughly)

• Processors (CPUs)   <= note that those already contain multiple cores

• Compute Node: collection of CPUs with a shared memory

• nodes may also have “accelerators” like graphical processing units (GPU)

• Cluster: collection of nodes connected with a (very fast) network



Why Parallel Computing?

PAST : Parallel Computing = High End Science

TODAY : Parallel Computing = Everyday (industry, 

academia) Computing

Advantages

Save time and money - shorten time to completion

Solve bigger problems and process more data

Exploit concurrency - many things at the same time

Use of non-local resources



• Moore’s law (1965)

• observation: number of transistors that can be placed inexpensively on an integrated 

circuit doubles approximately every two years

• still ongoing...BUT: increase comes by having more and more cores per CPU

• Before (roughly) 2002:

• more performance for free, 

clock rates increased,

cores got faster

• Now:

• observed gap between attained

performance and possible one

• need to use parallel computing

• Wirth’s law (1995)

• “software is getting slower more rapidly than hardware becomes faster”

Why Parallel Computing?

picture source: Wikipedia



Why Parallel Computing?

Physical/Practical constraints for even faster serial computers:

Transmission speeds - the speed of a serial computer is directly dependent 

upon how fast data can move through hardware. Absolute limits are the speed of 

light (30 cm/nanosecond) and the transmission limit of copper wire (9 

cm/nanosecond). Increasing speeds necessitate increasing proximity of 

processing elements.

Limits to miniaturization - processor technology is allowing an increasing 

number of transistors to be placed on a chip. However, even with molecular or 

atomic-level components, a limit will be reached on how small components can 

be.

Economic limitations - it is increasingly expensive to make a single processor 

faster. Using a larger number of moderately fast commodity processors to 

achieve the same (or better) performance is less expensive.

Energy Limits - limits imposed by cooling needs for chips and supercomputers 

→ hitting the power wall



Revolution in Processors

Chip density is continuing increase ~2x every 2 years

Clock speed is not

Number of processor cores may double instead

Power is under control, no longer growing



Multicore Era

17

• The sea change: since 2006 all microprocessor companies are 

shipping computers with multiple cores per chip

• New Moore’s Law: double the number of cores per microprocessor 

per semi-conductor technology generation every two years

OLD

NEW Parallel programming Speed

SpeedHardware, Architecture, Compilers

• Need to deal with systems with millions of concurrent threads

• Need to deal with inter-chip parallelism as well as intra-chip 

parallelism



Parallelism today ?

All major processor vendors are producing multicore chips
Every machine is practically a parallel machine

To keep doubling performance, parallelism must double

Which (commercial) applications can use this parallelism?
Do they have to be rewritten from scratch?

Will all programmers have to be parallel programmers?
New software model needed

Try to hide complexity from most programmers – eventually

In the meantime, need to understand it

Computer industry betting on this big change, but does not have 

all the answers

CREDIT: J. Demmel



The TOP500 Project

Listing the 500 most powerful computers in the 

world 

Yardstick: performance (Rmax) of Linpack
Solve Ax=b, dense problem, matrix is random

Dominated by dense matrix-matrix multiply  

Updated twice a year:
ISC’xy in June in Germany

SCxy in November in the U.S.

TOP500 web site at: www.top500.org 

http://www.top500.org
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TOP500 - June 2016



TOP500 - June 2020



Units of Measure 

High Performance Computing (HPC) units are:

Flop: floating point operation, usually double precision unless noted

Flop/s: floating point operations per second

Bytes: size of data (a double precision floating point number is 8 bytes)

Typical sizes are millions, billions, trillions…

Mega MFlop/s = 10^6 flop/sec MByte = 2^20 ~ 10^6 bytes

Giga      GFlop/s = 10^9 flop/sec GByte = 2^30 ~ 10^9 bytes

Tera TFlop/s = 10^12 flop/sec TByte = 2^40 ~ 10^12 bytes 

Peta PFlop/s = 10^15 flop/sec PByte = 2^50 ~ 10^15 bytes

Exa EFlop/s = 10^18 flop/sec EByte = 2^60 ~ 10^18 bytes

Zetta ZFlop/s = 10^21 flop/sec ZByte = 2^70 ~ 10^21 bytes

Current fastest (public) machine: ~ 1194/1679 PFlop/s, 8.7M cores



How Rpeak is computed

Rpeak = Nominal Peak Performance (PP) 

PP [ Flop/s] = f [Hz = cycles/s] x c [Flop/cycle] x v [-] x n [-]

f : core frequency in CPU cycles per second

c : how many Flops per cycle 

v : SIMD width in number of doubles (or floats) 

n : # cores

Example: IBM BGQ chip (one compute node)

f = 1.6 GHz, c = 2 (supports FMA), v = 4, n = 16

PP = 1.6 * 2 * 4 * 16 GFlop/s = 204.8 GFlop/s

BGQ Rack (1024 nodes): 1024*204.8 = 209715.2 GFlop/s = 209.7 TFlop/s

IBM Sequoia @ LLNL (96 racks): 96 * 209.7  TFlop/s = 20.13 PFlop/s

These features 

can be found at 

the hardware 

specifications

FMA (fused multiply-add): 

a*b+c in one step 



Application Performance 

How many FP operations the application performs

Execution time (in seconds)

Fraction of the peak = Attained/Nominal performance

In many cases, FP operations can be replaced with INT operations, 

interactions, transactions, etc. (per second)  

How Rmax is computed

61.7%

74.1%

Rmax/Rpeak (%)

64.9%

85.3%



Performance Metrics

Time to solution: solve a problem as fast as possible

T(p): execution time on p processors

Speedup(p) = T(1)/T(p)

Strong scaling: keep the problem size constant as you increase 

the number of CPU cores p

Strong scaling Efficiency(p) = Speedup(p)/p (x100%)

CUBISM-MPCF on BGQ



Performance Metrics

Problem of strong scaling: speedup is 

limited by the serial fraction s of the code 

(Amdahl’s Law)

s = 1% → max speedup = 100

Weak scaling: constant work per core

increase the problem size with the number of 

CPU cores p

Efficiency(p) = T(p)/T(1) (x100%)

How well you can solve bigger problems

50%

60%

70%

80%

90%

100%

110%

1 300 1200 4800 10800 18600

E
ff
ic

ie
n

c
y

# Nodes

1 4 16 tasks/node

uDeviceX on Titan

ACM Gordon Bell Prize (every year at the SC conference): “awarded 

for peak performance or special achievements in scalability and 

time-to-solution on important science and engineering problems”  
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Performance GAP

~99% of SOFTWARE  uses < 10 % of HARDWARE
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HPC across Science/Technology 

Can we find widely used patterns ?

1. Embedded Computing (EEMBC benchmark)

2. Desktop/Server Computing (SPEC2006)

3. Database / Text Mining Software

4. Games/Graphics/Vision

5. Machine Learning

6. High Performance Computing (Original “7 Dwarfs”)

■ Result: 13 scientific kernels or “Dwarfs”

Common patterns of communication and computation

CREDIT: J. Demmel



Common Patterns = “Dwarfs” (Collela)

1.Finite State Mach.

2.Combinational

3.Graph Traversal

4.Structured Grid

5.Dense Matrix

6.Sparse Matrix

7.Spectral (FFT)

8.Dynamic Progr.

9.N-Body

10.MapReduce

11.Backtrack/ B&B

12.Graphical Models

13.Unstructured Grid

Embed SPEC DB Games ML HPC“Dwarfs”

Dwarf Popularity (Red Hot→ Blue Cool)
CREDIT: J. Demmel



Why writing fast parallel programs is hard

• Finding enough parallelism  (Amdahl’s Law)

• Granularity – how big should each parallel task be

• Locality – moving data costs more than arithmetic

• Load balance – don’t want 1K processors to wait for one slow one

• Coordination and synchronization – sharing data safely 

• Performance modeling/debugging/tuning

Principles of Parallel Computing

• Essential to know the hardware to get the best out of software

• KEY ISSUE: Understand in this context alternatives between algorithms

All of these things make parallel programming even harder than sequential programming.



Parallel Software Eventually

2 types of programmers ➔ 2 layers of software

Efficiency Layer (10% of programmers)
Expert programmers build Libraries implementing kernels, “Frameworks”, OS, ….

Highest fraction of peak performance possible

Productivity Layer (90% of programmers)
Domain experts / Non-expert programmers productively build parallel applications 
by composing frameworks & libraries

Hide as many details of machine, parallelism as possible

Willing to sacrifice some performance for productive programming

(credit: J. Demmel)



Anatomy of a Cluster

GPUs

CUDA
CPU core

C/C++, 

SIMD

Node: multiple processors

Shared Memory

OpenMP, C++/POSIX 

Threads

Cluster: network of nodes

Distributed memory

MPI



Some terminology

Parallelism in Hardware:

multiple cores and memory

Parallelism in Software:

process: executed program (has 

its own memory space etc.), can 

contain multiple threads, can run 

in parallel, can communicate with 

other processes

thread: can run in parallel and all 

threads of the same process 

share the application data 

(memory)

int a[1000];

int main( int argc, char** argv )
{

for(int i =   0; i <  500; i++ ) a[i] = 0;
for(int i = 500; i < 1000; i++ ) a[i] = 1;

return 0;
}

System Memory

System Bus

Processor

CoreCore Core Core

Cache Memories (L1, L2, L3)

Processor

CoreCore Core Core

Cache Memories (L1, L2, L3)



Sequential Code
int main(int argc, char** argv )
{

// vector size
const int N = 1600000;

// initialize vectors
std::vector<float> x(N,-1.2), y(N,3.4), z(N);

// do the sum z = x + y
for(int i = 0; i < N; i++) z[i] = x[i] + y[i];

return 0;
}



SIMD
int main(int argc, char** argv)
{

// vector size
const int N = 1600000;

// initialize vectors (assume correct memory alignment)
std::vector<float> x(N,-1.2), y(N,3.4), z(N);

// DO THE SUM z = x + y with SSE (width=4)
for( int i = 0; i < N; i += 4 )
{

// z[i] = x[i] + y[i];
__m128 xx = _mm_load_ps( &x[i] );
__m128 yy = _mm_load_ps( &y[i] );
__m128 zz = _mm_add_ps( xx, yy );
_mm_store_ps( &z[i], zz );

}

return 0;
}



C++ Threads
int main(int argc, char** argv)
{

// vector size
const int N = 1600000;

// initialize vectors
std::vector<float> x(N,-1.2), y(N,3.4), z(N);

// DO THE SUM z = x + y using 4 threads
int num_threads = 4;
int chunk = N / num_threads;
std::vector<std::thread> threads;

for (int t = 0; t < num_threads; t++)
{

threads.emplace_back( [&,t] {
for( int i = t*chunk; i < (t+1)*chunk; i++)

z[i] = x[i] + y[i];
});

}

for (std::thread& t:threads)
t.join();

return 0;

}



POSIX Threads

struct arg_t
{

float *x;
float *y;
float *z;
int t;
int chunk;

};

void *work(void *argument)
{

struct arg_t *args = (struct arg_t *)argument;

float *x = args->x;
float *y = args->y;
float *z = args->z;
int t = args->t;
int chunk = args->chunk;

for (int i = t*chunk; i < (t+1)*chunk; i++)
z[i] = x[i] + y[i];

return NULL;
}

int main(int argc, char** argv)
{

// vector size
const int N = 1600000;

// initialize vectors
std::vector<float> x(N,-1.2), y(N,3.4), z(N);

// DO THE SUM z = x + y using 4 threads
int num_threads = 4;
int chunk = N / num_threads;

struct arg_t args[num_threads];
pthread_t threads[num_threads];

for (int t = 0; t < num_threads; t++)
{

args[t].x = &x[0];
args[t].y = &y[0];
args[t].z = &z[0];
args[t].t = t;
args[t].chunk = chunk;

pthread_create(&threads[t], NULL, add, &args[t]);
}

for (int t = 0; t < num_threads; ++t)
pthread_join(threads[t], NULL);

return 0;

}



OpenMP
int main(int argc, char** argv)
{

// vector size
const int N = 1600000;

// initialize vectors
std::vector<float> x(N,-1.2), y(N,3.4), z(N);

// do the sum z = x + y
#pragma omp parallel for
for (int i = 0; i < N; i++) z[i] = x[i] + y[i];

return 0;
}



MPI
int main( int argc, char** argv )
{

// vector size
const int N = 1600000;

// Initialize communication, determine num_processes and our rank
int num_processes, rank;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD,&num_processes);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);

// initialize local parts of the vectors and do the sum z = x + y
int nlocal = N / num_processes;
std::vector<float> x(nlocal,-1.2), y(nlocal,3.4), z(nlocal);

for (int i = 0; i < nlocal; i++ ) z[i] = x[i] + y[i];

if (rank == 0 )
{

std::vector<float> fullz(N);
// collect all parts into fullz
MPI_Gather(&z[0],nlocal,MPI_FLOAT,&fullz[0],nlocal,MPI_FLOAT, 0,MPI_COMM_WORLD);

}
else

MPI_Gather(&z[0],nlocal,MPI_FLOAT,NULL,0,MPI_FLOAT,0,MPI_COMM_WORLD);

MPI_Finalize();

return 0;
}



MPI + OpenMP
int main( int argc, char** argv )
{

// vector size
const int N = 1600000;

// Initialize communication, determine num_processes and our rank
int num_processes, rank;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD,&num_processes);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);

// initialize local parts of the vectors and do the sum z = x + y
int nlocal = N / num_processes;
std::vector<float> x(nlocal,-1.2), y(nlocal,3.4), z(nlocal);

#pragma omp parallel for
for(int i = 0; i < nlocal; i++ ) z[i] = x[i] + y[i];

if (rank == 0)
{

std::vector<float> fullz(N);
// collect all parts into fullz
MPI_Gather(&z[0],nlocal,MPI_FLOAT,&fullz[0],nlocal,MPI_FLOAT, 0,MPI_COMM_WORLD);

}
else

MPI_Gather(&z[0],nlocal,MPI_FLOAT,NULL,0,MPI_FLOAT,0,MPI_COMM_WORLD);

MPI_Finalize();

return 0;
}



`

• Fast 

• Throughput  

• Optimization

When do I need Parallelism?

• be correct

• solve an important problem

• provide a useful interface (to people and other programs)

OK

Sequential

Only 

Parallel

A program needs to:



Programming Environments

Threads, OpenMP

• Work sharing

• Synchronization

• Performance and 

optimization

• Nested parallelism

• Tasking model

Message Passing (MPI)
• Point-to-point 

communication

• Collective operations

• Non-blocking 

communication

• Parallel I/O

Vectorization
• SIMD Instructions

• Data alignment

MPI+OpenMP

• Motivation

• General concepts

• Hybrid programming 

on SMP clusters

GPUs
• Architecture

• CUDA programming



What YOU should get out of the course

Understanding of computer hardware options from the HPC 

perspective

Overview of Multithreading, OpenMP and MPI, and 

experience using them 

Performance analysis and tuning

Exposure to various open research questions
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