
Παράλληλη Επεξεργασία

Εαρινό Εξάμηνο 2023-24

“Εισαγωγή”

Παναγιώτης Χατζηδούκας, Ευστράτιος Γαλλόπουλος

Teaching Quote

“Those who can, do; those who can’t, teach”

From George Bernard Shaw's Man and Superman

“Tell me and I forget, teach me and I may remember,

involve me and I learn.”
Benjamin Franklin

OUTLINE

Class Information

What and Why High Performance Computing (HPC) ?

Overview of

Hardware for HPC

Performance

Applications

Programming models (what we will see)

23.2 - Introduction

01.3 - Parallel architectures, Compilation

08.3 – Multithreading, POSIX Threads

15.3 - OpenMP I (intro)

22.3 - OpenMP II (how it works)

29.3 - OpenMP III (tasks) - Project Introduction

05.4 - Roofline Model, Memory

12.4 - SIMD

19.4 - MPI I (intro)

26.4 - MPI II (asynchronous communication)

03.5 -

10.5 -

17.5 - MPI + OpenMP

24.5 - GPUS + CUDA

31.5 - Recap

Course schedule (tentative)

Books

Εξάμηνο 6 - Εαρινό

Επιλογές Συγγραμμάτων:

• Βιβλίο [12532275]: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΛΛΗΛΗΣ
ΕΠΕΞΕΡΓΑΣΙΑΣ, ΣΤΕΛΙΟΣ ΠΑΠΑΔΑΚΗΣ, ΚΩΣΤΑΣ ΔΙΑΜΑΝΤΑΡΑΣ

• Βιβλίο [50656351]: ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΑΡΑΛΛΗΛΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ, PETER S. PACHECO

Πρόσθετο Διδακτικό Υλικό:

• Βιβλίο [320182]: ΠΑΡΑΛΛΗΛΑ ΣΥΣΤΗΜΑΤΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ, ΒΑΣΙΛΕΙΟΣ ΔΗΜΑΚΟΠΟΥΛΟΣ

READING MATERIAL

See Class Website

Parallel Programming for Science and Engineering, Victor Eijkhout:

https://web.corral.tacc.utexas.edu/CompEdu/pdf/pcse/EijkhoutParallelProgramming.pdf

Introduction to Parallel Programming:

http://www-users.cs.umn.edu/~karypis/parbook/

https://web.corral.tacc.utexas.edu/CompEdu/pdf/pcse/EijkhoutParallelProgramming.pdf
http://www-users.cs.umn.edu/~karypis/parbook/

https://eclass.upatras.gr/courses/CEID1057/

Class Website

Exercises

Goal of the exercises are to help you become familiar with

the material discussed in the class

Exercise session:

solution of the previous exercise: discussion and

feedback

introduction of the new exercise

The solution of the exercises will be available one week after

their introduction

Exam

GRADING:

MAX(EXAM, 0.8*EXAM + 0.2*PROJECT)

Why powerful computers are parallel

4

circa 1991-2006

all (2007 -)

CREDIT: J. Demmel

Parallel Computing

• Serial Computing:

• Problem has a series of

instructions

• Executed sequentially, one at

a time

• Parallel Computing

• Problem is split into sub-

problems that can be solved

concurrently

• Each subproblem runs

sequentially (as above) on a

separate machine/processor

• Some control/coordination

mechanism needed

Computer layout (in a nutshell)

• CPU

• does the computations

• contains multiple cores (usually)

• each core works mostly independently,

copy of a single core with global coordination

• contains several levels of caches to

speed up reading/writing to memory

(very relevant for high performance computing)

• Memory

• stores data for computations

• shared among the cores of the CPU (or multiple CPUs in a compute node)

• Network: connect compute nodes and connect to outer world

• Input/Output: displays, hard-drives, etc

Intel Core i7 CPU

picture source: legitreviews

Massively Parallel Computing

Sequoia IBM BlueGene/Q supercomputer (at Lawrence Livermore National Laboratory)

source:computing.llnl.gov

Components of a Supercomputer (roughly)

• Processors (CPUs) <= note that those already contain multiple cores

• Compute Node: collection of CPUs with a shared memory

• nodes may also have “accelerators” like graphical processing units (GPU)

• Cluster: collection of nodes connected with a (very fast) network

Why Parallel Computing?

PAST : Parallel Computing = High End Science

TODAY : Parallel Computing = Everyday (industry,

academia) Computing

Advantages

Save time and money - shorten time to completion

Solve bigger problems and process more data

Exploit concurrency - many things at the same time

Use of non-local resources

• Moore’s law (1965)

• observation: number of transistors that can be placed inexpensively on an integrated

circuit doubles approximately every two years

• still ongoing...BUT: increase comes by having more and more cores per CPU

• Before (roughly) 2002:

• more performance for free,

clock rates increased,

cores got faster

• Now:

• observed gap between attained

performance and possible one

• need to use parallel computing

• Wirth’s law (1995)

• “software is getting slower more rapidly than hardware becomes faster”

Why Parallel Computing?

picture source: Wikipedia

Why Parallel Computing?

Physical/Practical constraints for even faster serial computers:

Transmission speeds - the speed of a serial computer is directly dependent

upon how fast data can move through hardware. Absolute limits are the speed of

light (30 cm/nanosecond) and the transmission limit of copper wire (9

cm/nanosecond). Increasing speeds necessitate increasing proximity of

processing elements.

Limits to miniaturization - processor technology is allowing an increasing

number of transistors to be placed on a chip. However, even with molecular or

atomic-level components, a limit will be reached on how small components can

be.

Economic limitations - it is increasingly expensive to make a single processor

faster. Using a larger number of moderately fast commodity processors to

achieve the same (or better) performance is less expensive.

Energy Limits - limits imposed by cooling needs for chips and supercomputers

→ hitting the power wall

Revolution in Processors

Chip density is continuing increase ~2x every 2 years

Clock speed is not

Number of processor cores may double instead

Power is under control, no longer growing

Multicore Era

17

• The sea change: since 2006 all microprocessor companies are

shipping computers with multiple cores per chip

• New Moore’s Law: double the number of cores per microprocessor

per semi-conductor technology generation every two years

OLD

NEW Parallel programming Speed

SpeedHardware, Architecture, Compilers

• Need to deal with systems with millions of concurrent threads

• Need to deal with inter-chip parallelism as well as intra-chip

parallelism

Parallelism today ?

All major processor vendors are producing multicore chips
Every machine is practically a parallel machine

To keep doubling performance, parallelism must double

Which (commercial) applications can use this parallelism?
Do they have to be rewritten from scratch?

Will all programmers have to be parallel programmers?
New software model needed

Try to hide complexity from most programmers – eventually

In the meantime, need to understand it

Computer industry betting on this big change, but does not have

all the answers

CREDIT: J. Demmel

The TOP500 Project

Listing the 500 most powerful computers in the

world

Yardstick: performance (Rmax) of Linpack
Solve Ax=b, dense problem, matrix is random

Dominated by dense matrix-matrix multiply

Updated twice a year:
ISC’xy in June in Germany

SCxy in November in the U.S.

TOP500 web site at: www.top500.org

http://www.top500.org

Core Count

0

125

250

375

500

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

Sy
st
e
m
s

1
2
3-4
5-8
9-16
17-32
33-64
65-128
129-256
257-512
513-1024
1025-2048
2049-4096
4k-8k
8k-16k
16k-32k
32k-64k
64k-128k

TOP500 - June 2016

TOP500 - June 2020

Units of Measure

High Performance Computing (HPC) units are:

Flop: floating point operation, usually double precision unless noted

Flop/s: floating point operations per second

Bytes: size of data (a double precision floating point number is 8 bytes)

Typical sizes are millions, billions, trillions…

Mega MFlop/s = 10^6 flop/sec MByte = 2^20 ~ 10^6 bytes

Giga GFlop/s = 10^9 flop/sec GByte = 2^30 ~ 10^9 bytes

Tera TFlop/s = 10^12 flop/sec TByte = 2^40 ~ 10^12 bytes

Peta PFlop/s = 10^15 flop/sec PByte = 2^50 ~ 10^15 bytes

Exa EFlop/s = 10^18 flop/sec EByte = 2^60 ~ 10^18 bytes

Zetta ZFlop/s = 10^21 flop/sec ZByte = 2^70 ~ 10^21 bytes

Current fastest (public) machine: ~ 1194/1679 PFlop/s, 8.7M cores

How Rpeak is computed

Rpeak = Nominal Peak Performance (PP)

PP [Flop/s] = f [Hz = cycles/s] x c [Flop/cycle] x v [-] x n [-]

f : core frequency in CPU cycles per second

c : how many Flops per cycle

v : SIMD width in number of doubles (or floats)

n : # cores

Example: IBM BGQ chip (one compute node)

f = 1.6 GHz, c = 2 (supports FMA), v = 4, n = 16

PP = 1.6 * 2 * 4 * 16 GFlop/s = 204.8 GFlop/s

BGQ Rack (1024 nodes): 1024*204.8 = 209715.2 GFlop/s = 209.7 TFlop/s

IBM Sequoia @ LLNL (96 racks): 96 * 209.7 TFlop/s = 20.13 PFlop/s

These features

can be found at

the hardware

specifications

FMA (fused multiply-add):

a*b+c in one step

Application Performance

How many FP operations the application performs

Execution time (in seconds)

Fraction of the peak = Attained/Nominal performance

In many cases, FP operations can be replaced with INT operations,

interactions, transactions, etc. (per second)

How Rmax is computed

61.7%

74.1%

Rmax/Rpeak (%)

64.9%

85.3%

Performance Metrics

Time to solution: solve a problem as fast as possible

T(p): execution time on p processors

Speedup(p) = T(1)/T(p)

Strong scaling: keep the problem size constant as you increase

the number of CPU cores p

Strong scaling Efficiency(p) = Speedup(p)/p (x100%)

CUBISM-MPCF on BGQ

Performance Metrics

Problem of strong scaling: speedup is

limited by the serial fraction s of the code

(Amdahl’s Law)

s = 1% → max speedup = 100

Weak scaling: constant work per core

increase the problem size with the number of

CPU cores p

Efficiency(p) = T(p)/T(1) (x100%)

How well you can solve bigger problems

50%

60%

70%

80%

90%

100%

110%

1 300 1200 4800 10800 18600

E
ff
ic

ie
n

c
y

Nodes

1 4 16 tasks/node

uDeviceX on Titan

ACM Gordon Bell Prize (every year at the SC conference): “awarded

for peak performance or special achievements in scalability and

time-to-solution on important science and engineering problems”
source: http://awards.acm.org/bell/nominations.cfm

0

25

50

75

100

125

1 4 16 64 256 1024 4096 16384

S
p

e
e

d
u

p

of cores

http://awards.acm.org/bell/nominations.cfm

Performance GAP

~99% of SOFTWARE uses < 10 % of HARDWARE

C
a

m
e

ro
n

 e
t
a

l,
 I
E

E
E

 C
o

m
p

u
te

r
2

0
0

5

107

108

HARDWARE

SOFTWARE

June

2011

June

2013
….

PERF.

GAP

HPC across Science/Technology

Can we find widely used patterns ?

1. Embedded Computing (EEMBC benchmark)

2. Desktop/Server Computing (SPEC2006)

3. Database / Text Mining Software

4. Games/Graphics/Vision

5. Machine Learning

6. High Performance Computing (Original “7 Dwarfs”)

■ Result: 13 scientific kernels or “Dwarfs”

Common patterns of communication and computation

CREDIT: J. Demmel

Common Patterns = “Dwarfs” (Collela)

1.Finite State Mach.

2.Combinational

3.Graph Traversal

4.Structured Grid

5.Dense Matrix

6.Sparse Matrix

7.Spectral (FFT)

8.Dynamic Progr.

9.N-Body

10.MapReduce

11.Backtrack/ B&B

12.Graphical Models

13.Unstructured Grid

Embed SPEC DB Games ML HPC“Dwarfs”

Dwarf Popularity (Red Hot→ Blue Cool)
CREDIT: J. Demmel

Why writing fast parallel programs is hard

• Finding enough parallelism (Amdahl’s Law)

• Granularity – how big should each parallel task be

• Locality – moving data costs more than arithmetic

• Load balance – don’t want 1K processors to wait for one slow one

• Coordination and synchronization – sharing data safely

• Performance modeling/debugging/tuning

Principles of Parallel Computing

• Essential to know the hardware to get the best out of software

• KEY ISSUE: Understand in this context alternatives between algorithms

All of these things make parallel programming even harder than sequential programming.

Parallel Software Eventually

2 types of programmers ➔ 2 layers of software

Efficiency Layer (10% of programmers)
Expert programmers build Libraries implementing kernels, “Frameworks”, OS, ….

Highest fraction of peak performance possible

Productivity Layer (90% of programmers)
Domain experts / Non-expert programmers productively build parallel applications
by composing frameworks & libraries

Hide as many details of machine, parallelism as possible

Willing to sacrifice some performance for productive programming

(credit: J. Demmel)

Anatomy of a Cluster

GPUs

CUDA
CPU core

C/C++,

SIMD

Node: multiple processors

Shared Memory

OpenMP, C++/POSIX

Threads

Cluster: network of nodes

Distributed memory

MPI

Some terminology

Parallelism in Hardware:

multiple cores and memory

Parallelism in Software:

process: executed program (has

its own memory space etc.), can

contain multiple threads, can run

in parallel, can communicate with

other processes

thread: can run in parallel and all

threads of the same process

share the application data

(memory)

int a[1000];

int main(int argc, char** argv)
{

for(int i = 0; i < 500; i++) a[i] = 0;
for(int i = 500; i < 1000; i++) a[i] = 1;

return 0;
}

System Memory

System Bus

Processor

CoreCore Core Core

Cache Memories (L1, L2, L3)

Processor

CoreCore Core Core

Cache Memories (L1, L2, L3)

Sequential Code
int main(int argc, char** argv)
{

// vector size
const int N = 1600000;

// initialize vectors
std::vector<float> x(N,-1.2), y(N,3.4), z(N);

// do the sum z = x + y
for(int i = 0; i < N; i++) z[i] = x[i] + y[i];

return 0;
}

SIMD
int main(int argc, char** argv)
{

// vector size
const int N = 1600000;

// initialize vectors (assume correct memory alignment)
std::vector<float> x(N,-1.2), y(N,3.4), z(N);

// DO THE SUM z = x + y with SSE (width=4)
for(int i = 0; i < N; i += 4)
{

// z[i] = x[i] + y[i];
__m128 xx = _mm_load_ps(&x[i]);
__m128 yy = _mm_load_ps(&y[i]);
__m128 zz = _mm_add_ps(xx, yy);
_mm_store_ps(&z[i], zz);

}

return 0;
}

C++ Threads
int main(int argc, char** argv)
{

// vector size
const int N = 1600000;

// initialize vectors
std::vector<float> x(N,-1.2), y(N,3.4), z(N);

// DO THE SUM z = x + y using 4 threads
int num_threads = 4;
int chunk = N / num_threads;
std::vector<std::thread> threads;

for (int t = 0; t < num_threads; t++)
{

threads.emplace_back([&,t] {
for(int i = t*chunk; i < (t+1)*chunk; i++)

z[i] = x[i] + y[i];
});

}

for (std::thread& t:threads)
t.join();

return 0;

}

POSIX Threads

struct arg_t
{

float *x;
float *y;
float *z;
int t;
int chunk;

};

void *work(void *argument)
{

struct arg_t *args = (struct arg_t *)argument;

float *x = args->x;
float *y = args->y;
float *z = args->z;
int t = args->t;
int chunk = args->chunk;

for (int i = t*chunk; i < (t+1)*chunk; i++)
z[i] = x[i] + y[i];

return NULL;
}

int main(int argc, char** argv)
{

// vector size
const int N = 1600000;

// initialize vectors
std::vector<float> x(N,-1.2), y(N,3.4), z(N);

// DO THE SUM z = x + y using 4 threads
int num_threads = 4;
int chunk = N / num_threads;

struct arg_t args[num_threads];
pthread_t threads[num_threads];

for (int t = 0; t < num_threads; t++)
{

args[t].x = &x[0];
args[t].y = &y[0];
args[t].z = &z[0];
args[t].t = t;
args[t].chunk = chunk;

pthread_create(&threads[t], NULL, add, &args[t]);
}

for (int t = 0; t < num_threads; ++t)
pthread_join(threads[t], NULL);

return 0;

}

OpenMP
int main(int argc, char** argv)
{

// vector size
const int N = 1600000;

// initialize vectors
std::vector<float> x(N,-1.2), y(N,3.4), z(N);

// do the sum z = x + y
#pragma omp parallel for
for (int i = 0; i < N; i++) z[i] = x[i] + y[i];

return 0;
}

MPI
int main(int argc, char** argv)
{

// vector size
const int N = 1600000;

// Initialize communication, determine num_processes and our rank
int num_processes, rank;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD,&num_processes);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);

// initialize local parts of the vectors and do the sum z = x + y
int nlocal = N / num_processes;
std::vector<float> x(nlocal,-1.2), y(nlocal,3.4), z(nlocal);

for (int i = 0; i < nlocal; i++) z[i] = x[i] + y[i];

if (rank == 0)
{

std::vector<float> fullz(N);
// collect all parts into fullz
MPI_Gather(&z[0],nlocal,MPI_FLOAT,&fullz[0],nlocal,MPI_FLOAT, 0,MPI_COMM_WORLD);

}
else

MPI_Gather(&z[0],nlocal,MPI_FLOAT,NULL,0,MPI_FLOAT,0,MPI_COMM_WORLD);

MPI_Finalize();

return 0;
}

MPI + OpenMP
int main(int argc, char** argv)
{

// vector size
const int N = 1600000;

// Initialize communication, determine num_processes and our rank
int num_processes, rank;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD,&num_processes);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);

// initialize local parts of the vectors and do the sum z = x + y
int nlocal = N / num_processes;
std::vector<float> x(nlocal,-1.2), y(nlocal,3.4), z(nlocal);

#pragma omp parallel for
for(int i = 0; i < nlocal; i++) z[i] = x[i] + y[i];

if (rank == 0)
{

std::vector<float> fullz(N);
// collect all parts into fullz
MPI_Gather(&z[0],nlocal,MPI_FLOAT,&fullz[0],nlocal,MPI_FLOAT, 0,MPI_COMM_WORLD);

}
else

MPI_Gather(&z[0],nlocal,MPI_FLOAT,NULL,0,MPI_FLOAT,0,MPI_COMM_WORLD);

MPI_Finalize();

return 0;
}

`

• Fast

• Throughput

• Optimization

When do I need Parallelism?

• be correct

• solve an important problem

• provide a useful interface (to people and other programs)

OK

Sequential

Only

Parallel

A program needs to:

Programming Environments

Threads, OpenMP

• Work sharing

• Synchronization

• Performance and

optimization

• Nested parallelism

• Tasking model

Message Passing (MPI)
• Point-to-point

communication

• Collective operations

• Non-blocking

communication

• Parallel I/O

Vectorization
• SIMD Instructions

• Data alignment

MPI+OpenMP

• Motivation

• General concepts

• Hybrid programming

on SMP clusters

GPUs
• Architecture

• CUDA programming

What YOU should get out of the course

Understanding of computer hardware options from the HPC

perspective

Overview of Multithreading, OpenMP and MPI, and

experience using them

Performance analysis and tuning

Exposure to various open research questions

	Slide 1: Παράλληλη Επεξεργασία Εαρινό Εξάμηνο 2023-24 “Εισαγωγή”
	Slide 2: Teaching Quote
	Slide 3: OUTLINE
	Slide 4: Course schedule (tentative)
	Slide 5: Books
	Slide 6: Class Website
	Slide 7: Exercises
	Slide 8: Exam
	Slide 9: Why powerful computers are parallel
	Slide 10: Parallel Computing
	Slide 11: Computer layout (in a nutshell)
	Slide 12: Massively Parallel Computing
	Slide 13: Why Parallel Computing?
	Slide 14: Why Parallel Computing?
	Slide 15: Why Parallel Computing?
	Slide 16: Revolution in Processors
	Slide 17: Multicore Era
	Slide 18: Parallelism today ?
	Slide 19: The TOP500 Project
	Slide 20: Core Count
	Slide 21: TOP500 - June 2016
	Slide 22: TOP500 - June 2020
	Slide 23: Units of Measure
	Slide 24: How Rpeak is computed
	Slide 25: How Rmax is computed
	Slide 26: Performance Metrics
	Slide 27: Performance Metrics
	Slide 28: Performance GAP
	Slide 29: HPC across Science/Technology Can we find widely used patterns ?
	Slide 30: Common Patterns = “Dwarfs” (Collela)
	Slide 31: Why writing fast parallel programs is hard
	Slide 32: Parallel Software Eventually
	Slide 33: Anatomy of a Cluster
	Slide 34: Some terminology
	Slide 35: Sequential Code
	Slide 36: SIMD
	Slide 37: C++ Threads
	Slide 38: POSIX Threads
	Slide 39: OpenMP
	Slide 40: MPI
	Slide 41: MPI + OpenMP
	Slide 42: When do I need Parallelism?
	Slide 43: Programming Environments
	Slide 44: What YOU should get out of the course

