
Parallel Computing
Spring semester 2022-23

P. Hadjidoukas

Set 7 - MPI I
Issued: May 3, 2023

Question 1: 2D Diffusion and MPI
Heat flow in a medium can be described by the diffusion equation

∂ρ(r, t)

∂t
= D∇2ρ(r, t), (1)

where ρ(r, t) is a measure for the amount of heat at position r and time t and the diffusion
coefficient D is constant.

Let’s define the domain Ω in two dimensions as {x, y} ∈ [−1, 1]2. Equation 1 then becomes

∂ρ(x, y, t)

∂t
= D

(
∂2ρ(x, y, t)

∂x2
+
∂2ρ(x, y, t)

∂y2

)
. (2)

Equation 2 can be discretized with a central finite difference scheme in space and explicit Euler
in time to yield:

ρ
(n+1)
r,s − ρ(n)r,s

δt
= D

(
ρ
(n)
r−1,s − 2ρ

(n)
r,s + ρ

(n)
r+1,s

δx2
+
ρ
(n)
r,s−1 − 2ρ

(n)
r,s + ρ

(n)
r,s−1

δy2

)
(3)

where ρ(n)r,s = ρ(−1 + rδx,−1 + sδy, nδt) and δx = 2
N−1

, δy = 2
M−1

for a domain discretized
with N ×M gridpoints.

We use open boundary conditions

ρ(x, y, t) = 0 ∀ t ≥ 0 and (x, y) /∈ Ω (4)

and an initial density distribution

ρ(x, y, 0) =

{
1 |x, y| < 1/2

0 otherwise
(5)

a) Implement the OpenMP parallelization of the 2D diffusion equation. Parallelize the routines
that initialize and advance the system.
The parallel code can be found in diffusion2d_omp.c.

b) Implement the MPI parallelization of the 2D diffusion equation by filling in all parts of
the code marked by TODO:MPI. Decompose the domain using tiling decomposition scheme
(described in the lecture notes). (i.e. distribute the rows evenly to the MPI processes).

1

• Note 1: Study and become familiar with the provided OpenMP version of the code.
• Note 2: Do not use non-blocking communication (which has not been discussed yet).

The parallel code can be found in diffusion2d_mpi.c. Significant points: MPI initial-
ization, getting the rank, the number of processes, MPI finalization, MPI send/receive
operations.
A series of snapshots of the simulation in time are shown in the figure below.

Table 1: Example parameters.

D ⌦ �t

Set 1 1 128 ⇥ 128 0.00001

Set 2 1 256 ⇥ 256 0.000001

Set 3 1 1024 ⇥ 1024 0.00000001

Figure 1: Density for a system using parameter set #2 (256 ⇥ 256 grid).

c) Make a 2D density plot of ⇢(x, y, t) at t = 0, 0.5, 1, 2.
The real-space Laplacian in equation (1) pushes the cloud away from the center and
smoothens the edges of the initial density at t = 0, see fig. 1.

Question 2: Barrier - Synchronization with threading
A barrier is a synchronization point between multiple execution units. In this exercise we want to
implement a barrier class using C++11 manual threading which fulfills the following syntax.

1 barrier b(nthreads);
2 // ... spawn ‘nthreads‘ threads ...
3 // inside each thread:
4 b.wait()

The b.wait() statement returns only when all nthreads called that function.

a) Implement the barrier class and provide a small test for it.

2

Figure 1: Time evolution of the system for a grid of 128x128 points.

c) Compute an approximation to the integral of ρ over the entire domain in compute_diagnostics.
Compare your result after 1000 iterations using the result of the provided OpenMP code
that solves equation (1). To run the code use the parameters in Table 1.
The parallel implementation is based on the MPI reduction operation.

d) Suggest other ways to divide the real-space domain between processes with the aim of
minimizing communication overhead. Prove your argument by computing the message
communication size for the tiling domain decomposition and for your suggestion.
Assume a square domain of size NxN is split in P rectangular tiles (stripes) along the y−
(or x−) directions, with one tile per process. Then the maximum number of elements that
need to be communicated between neighboring processes is 2N , since two boundary rows of
grid-points need to be communicated to two neighboring processes. This applies for all tiles
that are not on the domain boundaries of the domain (since in our exercise, the boundary
conditions are not periodic so data do not need to be communicated at the domain bound-
aries). For the boundary tiles the message communication size is N since only one row of
data needs to be communicated.

Another approach is to split the grid into square tiles with one tile per process. The
total amount of communication per process if the domain is divided into square tiles is

2

Figure 2: Weak scaling for 100 time-steps. N2 is the number of local grid points

2[Nx/Px + Ny/Py] where Nx,y and Px,y is the number of grid points and processes in
each direction. As we are doing sparse matrix-vector multiplication the computation scales
as NxNy/PxPy. If we keep the total grid size N fixed and increase the total number of
processes P the computational load per process will decrease as 1/P . The communication
will stay constant for rectangular tiles, but will decrease as 1/

√
P for square tiles. Hence

finite difference discretization should scale much better if we use square tiles rather than
rectangular.
For the boundaries, instead of sending and receiving on each edge of the sub-domain we can
send twice the data on one side per dimension and shift the local grid. The next time-step
we send from the opposite side and shift the grid back. This will reduce communication
overhead and can have a noticeable effect for a small local domain.

e) (Optional) Make a strong and weak scaling plot.
Looking at the strong scaling (Fig. 2), for a total grid size N = 210 the sub-matrix fits
entirely into the cache minimizing memory access and resulting in almost perfect scaling.
We observe similar behavior for N = 211, as soon as the application utilizes the second
NUMA node. As we increase the system size we exceed the cache size and additional
memory accesses reduce performance. Despite the inter-node communication between the
two nodes, the code continues to scale on up to 48 processes (cores).
In the weak scaling (Fig. 3) the total computational domain per process is kept constant.
More specifically, the global grid dimension Ng is equal to N

√
(P), where P is the number

of processes and N is the grid dimension when running on a single core (P = 1). The drop
in the scaling for 12 cores is attributed to the fact that the problem size fits entirely into
the cache for P = 1. We also observe that the efficiency remains constant as the number
of NUMA nodes increases.

3

Figure 3: Weak scaling for 100 time-steps. N2 is the number of local grid points

Table 1: Example parameters.

Ω : [−L,L] N ×N timesteps
D L N T ∆t

Set 1 1 1 128 1000 0.00001

Set 2 1 1 256 1000 0.000001

Set 3 1 1 1024 1000 0.00000001

4

