
Parallel Computing
Spring semester 2022-23

P. Hadjidoukas

Set 2 - Numerical Integration and Multithreading
Issued: March 15, 2023

Question 1: Parallel Numerical Integration
The value of an integral

∫ b

a
f(x)dx can be approximated by computing its Riemann sum:

S =
∑n

i=1 f(x∗
i )∆x

where ∆x = xi − xi−1 = (b − a)/n, x∗
i some point in the interval [xi−1, xi], x0 = a and

xn = b. The midpoint approximation uses, in the Riemann sum, the middle point x̄i = (xi−1+xi)
2

of each interval [xi−1, xi]. In this question you will implement and parallelize this method.

a) The integral_seq.c file calculates sequentially the integral
∫ 4

1
f(x)dx, where f(x) =√

x · ln(x), using Riemann sum with the midpoint approximation.
Parallelize the code by starting several threads to compute the Riemann sum. Make sure
you do not introduce race conditions and verify your implementation by comparing the final
result with that computed by the serial program. Note that each thread should handle a
different interval of the integral.
The parallel code can be found in the file integral_mt.c.
The number of threads can be specified as a runtime argument to the executable, e.g. the
command: ./integral_mt 4, runs the parallel code with 4 threads. If not specified, the
code uses 2 threads by default.

b) Choose an appropriate number (n) of intervals and check how the wall-clock time for com-
puting the integral decreases with respect to the number of threads. Plot the time versus
the number of threads and report your observations.
The measurements were conducted on a single compute node with 24 cores. Each experi-
ment was repeated multiple times and the lowest time was taken. In Figure 1, we observe
that the execution time decreases as the number of threads increases. However, the code
fails to scale on more than 20 threads, a behavior which is better depicted in the speedup
(strong scaling) plot of Figure 2. The observed performance degradation is attributed to
overheads introduced by the thread scheduler of the operating system. This issue can be
resolved by applying thread pinning, i.e. binding each thread to a specific processor core.
This technique is automatically supported by OpenMP and will be discussed in the related
lectures and exercises.

1



Figure 1: Execution time vs Number of threads.

Figure 2: Strong scaling plot.

2


