
Parallel Processing
Spring semester 2022-23

P. Hadjidoukas

Set 2 - Numerical Integration and Multithreading
Issued: March 15, 2023

Question 1: Parallel Numerical Integration
The value of an integral

∫ b

a
f(x)dx can be approximated by computing its Riemann sum:

S =
∑n

i=1 f(x∗
i)∆x

where ∆x = xi − xi−1 = (b − a)/n, x∗
i some point in the interval [xi−1, xi], x0 = a and

xn = b. The midpoint approximation uses, in the Riemann sum, the middle point x̄i = (xi−1+xi)
2

of each interval [xi−1, xi]. In this question you will implement and parallelize this method.

a) The integral_seq.c file calculates sequentially the integral
∫ 4

1
f(x)dx, where f(x) =√

x · ln(x), using Riemann sum with the midpoint approximation.
Parallelize the code by starting several threads to compute the Riemann sum. Make sure
you do not introduce race conditions and verify your implementation by comparing the final
result with that computed by the serial program. Note that each thread should handle a
different interval of the integral.

b) Choose an appropriate number (n) of intervals and check how the wall-clock time for com-
puting the integral decreases with respect to the number of threads. Plot the time versus
the number of threads and report your observations.
The time measurements can be performed on any computer system of your preference (e.g.
personal laptop). In this case, you should report the hardware/software configuration of
that system (i.e. number and type of cores, operating system and compiler).

1

Question 2: Bug hunting and performance optimization
In the following code, do_work() is an external thread-safe function with a considerable exe-
cution time (e.g. several seconds) and returns a floating-point number that differs each time.
Each thread calls the function and add the returned value to the local variable counter.

1 #inc lude <s t d i o . h>
2 #inc lude <pth read . h>
3

4 extern f l o a t do_work () ; // implemented elsewhere
5 f l o a t coun t e r = 0 ;
6

7 void ∗ func (void ∗ arg)
8 {
9 f o r (i n t i = 0 ; i < 10 ; i++)

10 coun t e r += do_work () ;
11

12 return NULL ;
13 }
14

15 i n t main (i n t argc , char ∗ argv [])
16 {
17 pthread_t i d [4] ;
18 f o r (i n t i = 0 ; i < 4 ; i++)
19 pth read_crea t e (& i d [i] , NULL , func , NULL) ;
20

21 p r i n t f (" coun t e r=%f \n" , coun t e r) ;
22 return 0 ;
23 }

1. Report any possible issues of the code.

2. Modify the code to resolve those issues and explain your solution.

Constants and functions:
1 PTHREAD_MUTEX_INITIALIZER
2 pthread_mutex_in i t (pthread_mutex_t ∗mutex , const pthread_mutexatt r_t ∗ a t t r) ;
3 pthread_mutex_lock (pthread_mutex_t ∗mutex) ;
4 pthread_mutex_unlock (pthread_mutex_t ∗mutex) ;
5 p th r ead_jo i n (pthread_t thread , vo id ∗∗ r e t v a l) ;
6 pth read_crea t e (pthread_t ∗ th read , const pthread_att r_t ∗ a t t r , vo id ∗(∗ f unc) (vo id ∗) ,

vo id ∗ arg) ;

2

