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Ιδιοτιμές και ιδιοδιανύσματα I

Ορισμός 1

Έστω τετραγωνικό μητρώο A ∈ Cn×n. Τότε κάθε αριθμός λ ∈ C για τον οποίο το
γραμμικό σύστημα (A− λI)x = 0 έχει μη μηδενική λύση, x ∈ Cn, δηλ.

∃x ∈ Cn \ {0} τ.ώ. (A− λI)x = 0,

ονομάζεται ιδιοτιμή του A και το αντίστοιχο x ιδιοδιάνυσμα του A (για την
ιδιοτιμή λ). Αντίστοιχα, αν για κάποιο διάνυσμα x ̸= 0, ∃λ ∈ C τ.ώ. Ax = λx, το x
ονομάζεται ιδιοδιάνυσμα και το λ ιδιοτιμή του A για το x. Τα ζεύγη (λ, x)
λέγονται ιδιοζεύγη.

Οι ιδιοτιμές και τα ιδιοδιανύσματα ενός μητρώου αναδεικνύουν σημαντικές
ιδιότητες γι’ αυτό και τους υποχώρους που συνδέονται με αυτό και χρησιμο-
ποιούνται πολύ στις εφαρμογές.
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Ιδιοτιμές και ιδιοδιανύσματα II

Γεωμετρική ερμηνεία

Αν πολλαπλασιάσουμε το μητρώο με το ιδιοδιάνυσμά του ή συγγραμ-
μικά του, το παραγόμενο διάνυσμα παραμένει συγγραμμικό: Τα ιδιοδια-
νύσματα ορίζουν κατευθύνσεις που παραμενουν αναλλοίωτες από τον
πολλαπλασιασμό με το μητρώο.

Επιπλέον, στην περίπτωση των πραγματικών ιδιοτιμών:
Αν λ > 1, ∥Ax∥ > ∥x∥, δηλ. το διάνυσμα υφίσταται επιμήκυνση (stretching), δηλ.
κλιμάκωση κατά παράγονται λ.
Αν λ < 1, ∥Ax∥ < ∥x∥, δηλ. το διάνυσμα υφίσταται σμίκρυνση (shrinking), δηλ.
κλιμάκωση κατά παράγονται λ.
Αν λ < 0 το διάνυσμα υφίσταται ανάκλαση και κλιμάκωση (reflection + scaling)

Στη συνέχεια, τουλάχιστον για την απλή περίπτωση A ∈ R2×2:
θα δούμε τη γεωμετρική ερμηνεία του μετασχηματισμού,
και θα εξηγήσουμε γιατί υπάρχουν ιδιοτιμές και ιδιοδιανύσματα.
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Ιδιοτιμές και ιδιοδιανύσματα III

Προσοχή:

Για κάθε μητρώο ισχύει ότι αν z = 0 είναι το μηδενικό διάνυσμα, τότε Az = A0 = 0.
Παρόλα αυτά, το μηδενικό διάνυσμα ΔΕΝ λαμβάνεται υπόψη ως ιδιοδιάνυσμα.
Αντίθετα, μπορεί να ισχύει ότι Ax = 0 = 0 · x για x ̸= 0, οπότε το x θα είναι
ιδιοδιάνυσμα για την ιδιοτιμή λ = 0.
Αν Axλ = λxλ, τότε για κάθε γ ̸= 0 ισχύει ότι A(γxλ) = λ(γxλ). Επομένως, κάθε μη
μηδενικό πολλαπλάσιο ενός ιδιοδιανύσματος είναι και αυτό ιδιοδιάνυσμα για τη
συγκεκριμένη ιδιοτιμή.

Προσοχή

Άρα το μηδενικό διάνυσμα ΔΕΝ θεωρείται ιδιοδιάνυσμα αλλά το μηδέν
ΜΠΟΡΕΙ να είναι ιδιοτιμή.
Συνήθως, όταν αναφερόμαστε σε ιδιοδιανύσματα, θα θεωρούμε ότι είναι
γραμμικά ανεξάρτητα και ότι τα έχουμε κανονικοποιήσει, π.χ. να είναι
μοναδιαία.
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Ιδιοτιμές και ιδιοδιανύσματα IV

Παράδειγμα 1

Έστω ότι A =

(
1 0
0 −1

)
. Τότε αν x = e1, Ae1 = e1 και Ae2 = −e2. Επομένως

διακρίνουμε δύο ιδιοζεύγη, (1,e1), (−1,e2).

Παράδειγμα 2

Έστω ότι A =

(
1 2
0 −1

)
. Τότε προφανώς ισχύει ότι Ae1 = e1. Επίσης, αν το μοναδιαίο

διάνυσμα q =
√
2
2
[1,−1]⊤, τότε μπορείτε να επαληθεύσετε ότι Aq = −q. Επομένως

εντοπίσαμε τα δύο ιδιοζεύγη, (1,e1), (−1,q).

Παράδειγμα 3

Έστω A =

(
1.05 0.95
0.95 1.05

)
. Τότε αν δοκιμάσουμε τα διανύσματα q1 =

√
2

2
[−1, 1]⊤,

q =
√
2
2
[1, 1]⊤ θα δούμε ότι Aq1 = 2q1 και Aq2 = 0.1q2. Επομένως εντοπίσαμε 2

ιδιοζεύγη (2,q1), (0.1,q2).
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Ιδιοτιμές και ιδιοδιανύσματα V

Παράδειγμα 4

Έστω A =

(
1/2 1/2
1/2 1/2

)
. Τότε, Aq = q όπου q =

√
2
2
[1, 1]⊤. Επίσης Ap = 0 αν

p =
√
2
2
[1,−1]⊤. Επομένως, εντοπίσαμε δύο ιδιοζεύγη (1,q) και (0,p).

Παρατήρηση 1

Αν A όπως παραπάνω και x = q+ 1000p τότε Ax = Aq+ 1000Ap = q καθώς Ap = 0.
Δηλαδή, το A διαγράφει ό,τι βρίσκεται συγγραμμικά στο q. Κάθε διάνυσμα του R2

μπορεί να γραφτεί ως γραμμικός συνδυασμός των p,q επομένως αν x = γ1p+ γ2q
τότε Ax = γAp = γp.

Παράδειγμα 5

Έστω A =

(
1 1
1 0

)
. Τότε τα ιδιοζεύγη είναι τα εξής: Aq1 = λ1q1 όπου

λ1 = 1+
√
5

2
≈ 1.6180 και q1 =

(
1+

√
5

2
1

)
. Επίσης Aq2 = λ2q2 όπου

λ2 = 1−
√

5
2

≈ −0.6180 και q2 =

(
1−

√
5

2
1

)
.
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Ιδιοτιμές και ιδιοδιανύσματα VI

Παρατήρηση 2

Αν A όπως στο προηγούμενο παράδειγμα, όπως και πριν, αν x = γ1q1 + γ2q2 τότε

Ax = γ1Aq1 + γ2Aq2 = γ1λ1q1 + γ2λ2q2

και γενικότερα

Akx = γ1λ
k
1q1 + γ2λ

k
2q2

Επίσης προσέξτε ότι |λ2| < 1 ενώ |λ1| > 1 και μάλιστα είναι ο χρυσός λόγος (golden
ratio). Μπορείτε να επαληθεύσετε ή καλύτερα, με λίγη προσοχή, να βρείτε ότι αν
x = [1, 0]⊤ = e1 τότε γ1 =

√
5

5
, γ2 = −

√
5
5
. Επομένως για μεγάλες τιμές του k και x = e1,

ο όρος λk
2 → 0 και επομένως μπορούμε να προσεγγίσουμε το

Ake1 ≈
√
5

5
λk
1q1 =

√
5

5

(
1 +

√
5

2

)k (
1+

√
5

2
1

)
Η παραπάνω σχέση για το Ake1 δείχνει ότι η πρώτη προς τη δεύτερη συνιστώσα του
διανύσματος είναι ίση με τον χρυσό λόγο (golden ratio). Προσέξτε ότι οι 2 όροι του
διανύσματος Ake1 αποτελούν προσεγγίσεις για τους όρους ϕk+1, ϕk της ακολουθίας
Fibonnaci. Ενδιαφέρον!
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Γεωμετρική ερμηνεία και οπτικοποίηση

Χρησιμοποιούμε το περιβάλλον MATLAB και τη συνάρτηση-demo eigshow του
Cleve Moler .

cd / U se r s /EG_home/Dropbox /MATLAB/ CleveLaboratory /Cleve_Lab
% mot i va t i ona l exper iments w i th eigshowΑ
= [1 2 ; 2 1 ] ; eigshow (A ) ; Α
= [3 −2;1 0 ] ; eigshow (A ) ;

^^ I

Για δοθέν μητρώο A (π.χ. ένα από τα παραπάνω), η συνάρτηση eigshow1

δίνει τη δυνατότητα να παρακολουθούμε για κάθε σημείο (πράσινο) στο
μοναδιαίο κύκλο, δηλ για κάθε σημείο που αντιστοιχεί σε μοναδιαίο
διάνυσμα x ∈ R2 ∥x∥2 = 1, το σημείο (μπλε) που αντιστοιχεί στο γινόμενο
Ax. Οι τιμές αποτυπώνονται στο σχήμα (βλ. επόμενες διαφάνειες).
Βάσει του eigshow μπορούμε να διερευνήσουμε για οποιοδήποτε
A ∈ R2×2, πότε ισχύει ότι Ax = λx για πραγματικό βαθμωτό λ και μοναδιαίο
x.
Προσοχή: αυτή η γεωμετρική παρουσίαση είναι για εκπαιδευτικούς λόγους
και δεν συνιστά πρακτικό τρόπο εύρεσης ιδιοτιμών.

1Τοu Cleve Moler για το περιβάλλον MATLAB
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Οι ιδιότητες του {Ax|x ∈ R2, ∥x∥ = 1} (στην περίπτωση είναι μία έλλειψη με άξονες μήκους 3 και 1) εξηγούνται βάσει αυτών που

θα μάθουμε στο παρόν κεφάλαιο. A =

(
1 2
2 1

)
, ιδιοτιμέςΛ(A) = {−1, 3}, ιδιοδιανύσματα q1 =

√
2

2

(
−1
1

)
, q2 =

√
2

2

(
1
1

)

Γραμμική Άλγεβρα - Δ11 Ίχνος και Ορίζουσα 3/XII/2025 10 / 76



Λεπτομερέστερη αποτύπωση των διανυσμάτων για τα οποία Aq = λq. Προσέξτε
ότι :

1 A = A⊤ ∈ R2×2, δηλ. το μητρώο είναι πραγματικό και συμμετρικό.
2 Υπάρχουν δύο τιμές λ1 = −1, λ2 = 3 και δύο αντίστοιχα γραμμικά

ανεξάρτητα διανύσματα q1,q2 για τα οποία ισχύει ότι Aqj = λjqj.
Προφανώς, ισχύουν επίσης A(−qj) = λj(−qj) αλλά και A(γqj) = λj(γqj)
για οποιοδήποτε βαθμωτό γ.

3 Επομένως Aq1 = −q1,Aq2 = 3q2 και
A(−q1) = −(−q1) = q1,A(−q2) = −3q2. Οι τιμές {−1, 3} προσδιορίζουν
την κλιμάκωση ή/και αλλαγή φοράς στην οποία υπόκεινται τα διανύσματα
±q1,±q2 όταν πολλαπλασιαστούν με το A.

4 Τα διανύσματα ±Aq1,±Aq2 συμπίπτουν με τον ελάχιστο και μέγιστο
ημιάξονα της έλλειψης.

5 q⊤
1 q2 = q⊤

2 q1 = 0, δηλ. τα q1, q2 είναι μεταξύ τους ορθογώνια,
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Οι ιδιότητες του {Ax|x ∈ R2, ∥x∥ = 1} (στην περίπτωση είναι μία έλλειψη) εξηγούνται βάσει αυτών που θα μάθουμε στο παρόν

κεφάλαιο. A =

(
3 −2
1 0

)
, ιδιοτιμές Λ(A) = {2, 1}, ιδιοδιανύσματα q1 = 1

5

(√
4√
3

)
, q2 =

√
2

2

(
1
1

)
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Λεπτομερέστερη αποτύπωση των διανυσμάτων για τα οποία Aq = λq. Προσέξτε
ότι :

1 A ̸= A⊤, δηλ. το μητρώο δεν είναι συμμετρικό.
2 Υπάρχουν δύο τιμές λ1 = 2, λ2 = 1 και δύο αντίστοιχα γραμμικά

ανεξάρτητα διανύσματα q1,q2 για τα οποία ισχύει ότι Aqj = λjqj.
Προφανώς, ισχύουν επίσης A(−qj) = λj(−qj) αλλά και A(γqj) = λj(γqj)
για οποιοδήποτε βαθμωτό γ.

3 Επομένως Aq1 = 2q1,Aq2 = q2 και A(−q1) = 2(−q1),A(−q2) = −q2. Οι
τιμές {2, 1} προσδιορίζουν την κλιμάκωση ή/και αλλαγή φοράς στην οποία
υπόκεινται τα διανύσματα ±q1,±q2 όταν πολλαπλασιαστούν με το A.

4 Τα διανύσματα ±Aq1,±Aq2 δεν συμπίπτουν με τον ελάχιστο και μέγιστο
ημιάξονα της έλλειψης.

5 q⊤
1 q2 = q⊤

2 q1 ̸= 0, δηλ. τα q1, q2 δεν είναι μεταξύ τους ορθογώνια,
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Αιτιολόγηση ύπαρξης ιδιοζευγών I

Για την αιτιολόγηση ύπαρξης, θα περιοριστούμε στην περίπτωση μητρώων διά-
στασης 2× 2.
Έστω A ∈ C2×2. Για ένα αυθαίρετο y ∈ C2, υπολογίζουμε τα διανύσματα y,Ay,A2y. Aν τα y,Ay
είναι γραμμικά εξαρτημένα, τότε Ay = λy για κάποιο λ ∈ C. Αν τα y,Ay είναι γραμμικά ανεξάρτητα,
τότε τα y,Ay,A2y είναι οπωσδήποτε γραμμικά εξαρτημένα καθώς ανήκουν στον C2.
Επομένως, αν γράψουμε Bz = w όπου B = [y,Ay] και w = A2y, το γραμμικό σύστημα Bz = w έχει
μοναδική λύση. Δηλαδή [y,Ay]z = A2y. Αν z = [ζ1, ζ2]⊤, τότε

ζ1y+ ζ2Ay = A2y ⇒ A2y− ζ2Ay− ζ1y = 0

Από το παραπάνω, μπορούμε να ορίσουμε το 2βάθμιο πολυώνυμο p(r) = ρ2 − ζ2ρ − ζ1 που έχει
ακριβώς 2 ρίζες (ενδεχομένως ίσες) ρ1, ρ2 ∈ mathbbC. Επομένως θα ισχύει ότι

(A2 − ζ2A− ζ1I)y = 0 ⇒ (A− ρ1I)(A− ρ2I)y = 0

Επομένως ισχύει ότι τουλάχιστον ένας ή και οι δύο όροι (A− ρ1I), (A− ρ2I) θα είναι μη αντιστρέψι-
μος/οι. Γράφουμε τον όρο ως (A− ρI).
Ισχύει ότι null(A−ρI) ̸= {0} και ότι det(A−ρI) = 0. Επομένως για κάθε (μη μηδενικό) x ∈ null(A−ρI),
(A− ρI)x = 0. Επομένως για τα συγκεκριμένα ρ, x ισχύει ότι Ax = ρx.

Το ρ είναι ιδιοτιμή του A και το x ιδιοδιάνυσμα του A για την ιδιοτιμή ρ.
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Αιτιολόγηση ύπαρξης ιδιοζευγών II

Αποδείξαμε ότι υπάρχει τουλάχιστον μία ιδιοτιμή και αντίστοιχο ιδιοδιάνυσμα. Στη συνέχεια θα απο-
δείξουμε την ύπαρξη και δεύτερης ιδιοτιμής για το A ∈ R2×2.
Από τη θεωρία γνωρίζουμε ότι μπορούμε να επιλέξουμε ένα επιπλέον διάνυσμα y που είναι γραμ-
μικά ανεξάρτητο του x ώστε τα {x, y} να είναι βάση τουR2. Επομένως αν X = [x, y] τότε AX = [ρx,Ay].
Επειδή τα x, y γραμμικά ανεξάρτητα, θα είναι βάση για τον R2 επομένως μπορούμε να γράψουμε
το Ay = γ1x+ γ2y για κάποια γ1, γ2. Επομένως

AX = [ρx,Ay] = [ρx, γ1x+ γ2y] = [x, y]
[
ρ γ1
0 γ2

]
άρα AX = XT όπου T είναι το παραπάνω άνω τριγωνικό μητρώο. Το X είναι επίσης αντιστρέψιμο, άρα
= −1. Κατά συνέπεια, A−γ2I = XTX−1−γ2XX−1 και επομένως A−γ2I = X(T−γ2I)X−1. Προσέξτε
όμως ότι

T− γ2I =

[
ρ− γ2 γ1

0 γ2 − γ2︸ ︷︷ ︸
0

]

Επομένως το T− γ2I δεν είναι αντιστρέψιμο το ίδιο και το A− γ2I, άρα το γ2 είναι ιδιοτιμή του A. Άρα
αποδείξαμε ότι το AR2×2 έχει 2 ιδιοτιμές.
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Ζητήματα I

Ερωτήματα για ένα γενικό μητρώο A ∈ Rn×n:

Πόσες ιδιοτιμές έχει ;

Πόσα ιδιοδιανύσματα έχει ; (ή καλύτερα, ποιές είναι οι διαστάσεις των
αντίστοιχων μηδενόχωρων;)

Πώς υπολογίζονται τα ιδοζεύγη;

Γιατί είναι σημαντικά και μας ενδιαφέρουν;

Το λ = 0 ΜΠΟΡΕΙ να είναι ιδιοτιμή. Tο μηδενικό διάνυσμα, αν και ικανοποιεί
Ax = λx = 0 ΔΕΝ θεωρείται ιδιοδιάνυσμα.
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Σημασία;
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Τι λέει και τι γράφει ο κόσμος για τις ιδιοτιμές και τα ιδιοδιανύσματα;
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Ενδεικτικές εφαρμογές

Δείτε τα ενδιαφέροντα βίντεο του Zachary Todd (ZachStar) καθώς και μία διά-
σημη καταστροφή που σχετίζεται με τα ιδιοζεύγη.

Εφαρμογές ιδιοζευγών

Γενικές εφαρμογές μητρώων

κατάρρευση της γέφυρας Takoma στην πολιτεία Washington των ΗΠΑ.

Παρατήρηση 3

Σχετικά με το Παράδειγμα 5: Αν f(n) = [ϕn, ϕn−1]
⊤ τότε

Af(n) =
(
ϕn + ϕn−1

ϕn

)
Ίσως αναγνωρίζετε την αναδρομική σχέση της ακολουθίας Fibonacci! Δηλ. αν
το διάνυσμα f(n) περιέχει τους 2 πιο πρόσφατους όρους της ακολουθίας για
n = 0, 1, ... εκκινώντας από το f(0) = [1, 0]⊤, τότε f(n+1) = Af(n). Επομένως
μπορούμε να γράψουμε ότι :

f(n+1) = Af(n) = A2f(n−1) = · · · = An+1f(0).
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Παράδειγμα
Από το A =

(
3 −2
1 0

)
κατασκευάζουμε το παραμετροποιημένο

A(λ) = λI− A =

(
λ− 3 2
−1 λ

)
Οι ιδιοτιμές του A είναι όλες εκείνες οι τιμές λ (ενδεχομένως μιγαδικές) για τις οποίες το
A(λ) δεν είναι αντιστρέψιμο. Στην περίπτωσή μας, μπορούμε να επαληθεύσουμε ότι τα
A(1),A(2) δεν είναι αντιστρέψιμα. Επομένως υπάρχουν διανύσματα u1, u2 τέτοια ώστε:

A(1)u1 = 0,A(2)u2 = 0

Λύνοντας τα αντίστοιχα ομογενή συστήματα προκύπτει ότι οι (ειδικές) λύσεις τους είναι
οι u1 = (1, 1)⊤ και u2 = (2, 1)⊤. Άρα ισχύει ότι null(A(1)) = span {u1} και null(A(2)) =
span {u2}. Επομένως, ως ιδιοδιάνυσμα του για την ιδιοτιμή 1 μπορούμε να επιλέξουμε
οποιοδήποτε διάνυσμα του null(A(1)). Συνήθως, επιλέγουμε διανύσματα που έχουν κα-
νονικοποιηθεί με κάποιον τρόπο, π.χ. τέτοια ώστε ∥u1∥2 = ∥u2∥2 = 1. Στο προηγούμενο
παράδειγμα:

u1 =

√
2

2
[1, 1]⊤, u2 =

√
5

5
[2, 1]⊤

Προσοχή: Δεν εξηγήσαμε γιατί επιλέξαμε τα A(1), A(2). Ούτε το ότι για το δεδομένο A,
αυτά είναι τα μοναδικά δύο μη αντιστρέψιμα μητρώα λI−A. Ο σχεδιασμός συστηματικών
μεθόδων αναζήτησης και υπολογισμού τους είναι ένα από τα βασικά ζητούμενα του όχι
μόνον αυτού του κεφαλαίου, αλλά και πολλών βιβλίων και της σημερινής έρευνας.
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Παράδειγμα

Από το A =

(
−3 2
−12 7

)
κατασκευάζουμε το παραμετροποιημένο

A(λ) = λI− A =

(
λ+ 3 −2
12 λ− 7

)
Οι ιδιοτιμές του A είναι όλες εκείνες οι τιμές λ (ενδεχομένως μιγαδικές) για τις οποίες
το A(λ) δεν είναι αντιστρέψιμο. Στην περίπτωσή μας, μπορούμε να επαληθεύσουμε ότι
τα A(1),A(3) δεν είναι αντιστρέψιμα. Λύνοντας τα ομογενή συστήματα

A(1)u1 = 0,A(3)u2 = 0

προκύπτει ότι (ειδικές) λύσεις τους είναι οι u1 = (1, 2)⊤ και u2 = (1, 3)⊤. Προφανώς
ισχύει ότι null(A(1)) = span {u1} και null(A(3)) = span {u2}. Επομένως, ως ιδιοδιάνυ-
σμα του για την ιδιοτιμή 1 μπορούμε να επιλέξουμε οποιοδήποτε διάνυσμα του null(A(1)).
Συνήθως, επιλέγουμε διανύσματα που έχουν κανονικοποιηθεί με κάποιον τρόπο, π.χ. τέ-
τοια ώστε ∥u1∥2 = ∥u2∥2 = 1.
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Χαρακτηριστικό πολυώνυμο και ιδιοτιμές
Ένα ειδικό πολυώνυμο για κάθε μητρώο

Εξετάζουμε το det (λI− A) όπου λ είναι μία μεταβλητή:

Αν

λI− A =

(
λ− α11 −α12

−α21 λ− α22

)
det (λI− A) = (−α11 + λ)(−α22 + λ)− α21α12

= λ2 − (α11 + α22)λ+ α11α22 − α21α12

To det (A− λI) είναι πολυώνυμο 2ου βαθμού ως προς λ.

Προσέξτε τους συντελεστές των 2 μεγαλύτερων δυνάμεων λ2, λ και τη
σταθερά:

γ2 = 1,

γ1 = −(α11 + α22)

γ0 = α11α22 − α21α12
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Ορισμοί με ορίζουσες

Χαρακτηριστικό πολυώνυμο και ιδιοτιμές

Χαρακτηριστικό πολυώνυμο ενός μητρώου A ∈ Rn×n, ονομάζεται το
πολυώνυμο βαθμού n με το οποίο ισούται η ορίζουσα

p(λ) = det (λI− A) ή ισοδύναμα
p̂(λ) = det (A− λI) = (−1)np(λ).

Αν γράψουμε το πολυώνυμο σε δυναμομορφή, τότε

p(λ) = λn + γn−1λ
n−1 + · · ·+ γ1λ+ γ0

Προσέξτε ότι ο βαθμός του πολυωνύμου είναι ακριβώς n (γιατί;)
γn−1 = −trace (A), γ0 = (−1)ndet (A)
Οι ρίζες του χ.π. ονομάζονται ΙΔΙΟΤΙΜΕΣ (του μητρώου).
Το πολυώνυμο έχει ακριβώς n ρίζες και άρα n ιδιοτιμές. Μερικές ή όλες
μπορεί να είναι ίσες (πολλαπλές). Το σύνολο των ιδιοτιμών λέγεται το
φάσμα (spectrum) του .
Γράφουμε p(x) = (x− λ1)

µ1 · · · (x− λk)
µk όπου k ≤ n είναι το πλήθος των

διαφορετικών ιδιοτιμών, 1 ≤ µj ≤ k είναι η πολλαπλότητα της ιδιοτιμης λj και∑k
j=1 µk = n. Το µj λέγεται αλγεβρική πολλαπλότητα της ιδιοτιμής λj.
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Μία ιδέα επίλυσης του ΑΠΙ (ΜΟΝΟΝ ΓΙΑ ΠΟΛΥ ΜΙΚΡΑ ΠΡΟΒΛΗΜΑΤΑ - ΔΗΛ. ΓΙΑ
ΤΙΣ ΑΝΑΓΚΕΣ ΑΥΤΟΥ TOΥ ΜΑΘΗΜΑΤΟΣ!)

1 Εύρεση του χαρακτηριστικού πολυωνύμου. Δαπανηρή και αριθμητικά
προβληματική για μεγάλα προβλήματα.

2 Υπολογισμός των ριζών του (που είναι οι ιδιοτιμές). Αν n ≥ 5 τότε δεν
υπάρχει αναλυτικός τύπος υπολογισμού των ριζών και πρέπει να
χρησιμοποιηθεί (επαναληπτικός) αλγόριθμος προσέγγισης ριζών
πολυωνύμου2.

3 Για κάθε ιδιοτιμή, επίλυση του (A− λI)x = 0 και επιλογή των
ιδιοδιανυσμάτων (ανεύρεση των ειδικών λύσεων). Αλγόριθμος εύρεσης
μηδενοχώρου. Η ΤΕΤΡΙΜΜΕΝΗ ΛΥΣΗ x = 0 ΔΕΝ ΕΙΝΑΙ ΙΔΙΟΔΙΑΝΥΣΜΑ

Για κάθε ιδιοτιμή λj, συνήθως ενδιαφέρει ένα σύνολο από γραμμικά ανεξάρτητα
ιδιοδιανύσματα που είναι βάση για το null(λjI−A). Αυτά είναι ειδικές λύσεις του
(λI− A)x = 0. Συνήθως τα διανύσματα επιλέγονται κανονικοποιημένα.
Τα παραπάνω είναι μόνο για μικρά προβλήματα και δεν χρησιμοποιείται : Στην
πράξη (π.χ. στη MATLAB) χρησιμοποιούνται ειδικοί αλγόριθμοι (συνάρτηση eig)
για την εύρεση των ιδιοτιμών (πχ. αλγόριθμος QR. Μάλιστα, το χ.π. υπολογίζεται
μετά από κλήση στην eig για τον υπολογισμό των ιδιοτιμών και με υπολογισμό των
συντελεστών της δυναμομορφής από την παραγοντοποιημένη μορφή. Δηλαδή,
η διαδικασία που ακολουθείται έχει την αντίθετη φορά από αυτήν που χρησιμο-
ποιούμε εδώ3.

2Η αδυναμία αυτή αποτελεί ένα βασικό εύρημα των Μαθηματικών του 19ου αιώνα (Abel, Rufffini,
και Galois)

3Η αριθμητική επίλυση του ΑΠΙ είναι ένα σημαντικό επιστημονικό αντικείμενο των περιοχών της
Υπολογιστικής Γραμμικής Άλγεβρας και της Αριθμητικής Ανάλυσης.
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Παραδείγματα

A =

(
2 1
1 2

)
,

p(λ) = (λ− 1)(λ− 3), Λ(A) = {1, 3},
λ1 = 1, µ1 = 1, λ2 = 3, µ2 = 1.

A =


4 2 i 0 −2 i
2 i 4 −2 i 0
0 −2 i 4 2 i

−2 i 0 2 i 4


p(λ) = (λ− 4)2(λ− 4− 4i)(λ− 4 + 4i),
Λ(A) = {2, 4 + 4i, 4− 4i}, λ1 = 4, µ1 = 2,
λ2 = 4 + 4i, µ2 = 4− 4i.

A =

(
1 2
0 1

)
,

p(λ) = (λ− 1)2, Λ(A) = {1},
λ1 = 1, µ1 = 2.

A =

1 2 3
0 2 1
0 0 2

 ,

p(λ) = (λ− 1)(λ− 2)2,
Λ(A) = {1, 2}, λ1 = 1, µ1 = 1,
λ2 = 2, µ2 = 2.
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Παραδείγματα

A =


2 0 2 0
0 2 0 2
2 0 2 0
0 2 0 2



p(λ) = λ4 − 8λ3 + 16λ2 = λ2(λ− 4)2

επομένως

λ1 = 0, µ1 = 2, λ2 = 4, µ2 = 2.

και

Λ(A) = {0, 4}
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Ιδιοδιανύσματα I
Στη συνέχεια θα υπολογίσουμε ιδιοδιανύσματα για τις ιδιοτιμές μητρώου. Πρώτα εισά-
γουμε έναν ορισμό:

Ορισμός 2

Στο εξής, με τον όρο μητρώο μηδενόχωρου θα εννοούμε το μητρώο εκείνο του οποίου
οι στήλες συνιστούν μια βάση του μηδενόχωρου.

Έστω το μητρώο A =

(
2 1
1 2

)
, Βρήκαμε ότι λ1 = 1, µ1 = 1, λ2 = 3, µ2 = 1.

Θέτουμε A(1) =
(
−1 −1
−1 −1

)
και επιλύουμε A(1)x = 0:

Παρατηρούμε ότι η τάξη του A(1) είναι deg (A(1)) = 1. Μία βάση για το μηδενόχωρο

του A(1) (εδικές λύσεις του ομογενούς συστήματος για το A(1)) είναι
(
−1
1

)
. Κανονικο-

ποιούμε και επιλέγουμε ιδιοδιάνυσμα για το λ1: x1 = 1√
2

(
−1
1

)
.

Θέτουμε A(3) =
(

1 −1
−1 1

)
και επιλύουμε A(3)x = 0: Η τάξη deg (A(3)) = 1. Μία βάση

για το μηδενόχωρο του A(3) είναι
(
1
1

)
. Κανονικοποιούμε και επιλέγουμε ιδιοδιάνυσμα

για το λ2: x2 = 1√
2

(
1
1

)
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Παρατηρήσεις I
Θα ισχύει ότι A(x1, x2) = (λ1x1, λ2x2)(

2 1
1 2

)(− 1√
2

1√
2

1√
2

1√
2

)
=

(
− 1√

2
3 1√

2
1√
2

3 1√
2

)

=

(
− 1√

2
1√
2

1√
2

1√
2

)(
1 0
0 3

)
Προσέξτε ότι αν X = (x1, x2) και Λ = diag(λ1, λ2), τότε

AX = XΛ

Το X είναι αντιστρέψιμο γιατί οι ιδιοτιμές είναι διαφορετικές (βλ. παρακάτω). Είναι
επίσης ορθογώνιο (λόγω συμμετρίας του A, θα το δούμε και αυτό αργότερα).
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Παρατηρήσεις II

Ισχύει επομένως ότι(
− 1√

2
1√
2

1√
2

1√
2

)(
2 1
1 2

)(− 1√
2

1√
2

1√
2

1√
2

)
=

(
1 0
0 3

)
Δηλαδή

X−1AX = X⊤AX = Λ.

Προσοχή

Ο μετασχηματισμός A → X−1AX λέγεται μετασχηματισμός ομοιότητας του A με
το X. Όταν το X είναι ορθογώνιο, όπως εδώ, χαρακτηρίζεται ως ορθογώνιος
μετασχηματισμός ομοιότητας. Στην περίπτωση που εξετάζουμε, η εφαρμογή
του μετασχηματισμού, μετατρέπει το A σε διαγώνιο μητρώο, που περιέχει τις
ιδιοτιμές. Τότε λέμε ότι το μητρώο είναι διαγωνιοποιήσιμο (δείτε παρακάτω).
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Ιδιοδιανύσματα I

A =


2 0 2 0
0 2 0 2
2 0 2 0
0 2 0 2

 . Είχαμε βρει ότι λ1 = 0, µ1 = 2, λ2 = 2, µ2 = 2. Για να

βρούμε ιδιοδιανύσματα:
Θέτουμε A(0) = −A και επιλύουμε −Ax = 0:

Η τάξη deg (A(0)) = 2. Μία βάση για το μηδενόχωρο του A(0) είναι


−1 0
0 −1
1 0
0 1

.

Κανονικοποιούμε και επιλέγουμε ιδιοδιανύσματα για το λ1 = 0: x1 = 1√
2


−1
0
1
0

,

x2 = 1√
2


0
−1
0
1

.
Θέτουμε A(4) = 4I− A και επιλύουμε (4I− A)x = 0:
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Ιδιοδιανύσματα II

Η τάξη deg (A(4)) = 2. Μία βάση για το μηδενόχωρο του A(4) είναι


1 0
0 1
1 0
0 1

.

Κανονικοποιούμε και επιλέγουμε ιδιοδιανύσματα για το λ2 = 4: x3 = 1√
2


1
0
1
0

,

x4 = 1√
2


0
1
0
1


Για το A =

(
1 2
0 1

)
. βρήκαμε ότι Λ(A) = {1}, λ1 = 1, µ1 = 2.

Θέτουμε A(1) =
(
−1 −1
−1 −1

)
και επιλύουμε A(1)x = 0:

Η τάξη deg (A(1)) = 1, επομένως η διάσταση του null(A(1)) = 1. Παρατηρούμε
ότι null(A(1)) < µ1.
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Ιδιοδιανύσματα III

Μία βάση για το μηδενόχωρο του A(1) είναι
(
1
0

)
. Κανονικοποιούμε, οπότε το

ιδιοδιάνυσμα για το λ1 είναι x1 = 1√
2

(
1
0

)
Προσοχή: Όλα τα ιδιοδιανύσματα του A για το λ1 = 1 είναι πολλαπλάσια του
x1. Δεν υπάρχουν άλλα! Εφόσον η μόνη ιδιοτιμή είναι το λ1 = 1, αυτό είναι το
μοναδικό ιδιοδιάνυσμα του A.
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Σημαντική ιδιότητα του χαρακτηριστικού πολυωνύμου
Η παρατήρηση του Caylay

Είδαμε ότι στην περίπτωση A ∈ R2×2

det (λI− A) = λ2 − (α11 + α22)λ+ α11α22 − α21α12.

Αντικαθιστούμε το λ με το :

p(A) = A2 − (α11 + α22)A+ (α11α22 − α21α12)I

=

(
α2

11 + α12α21 α11α12 + α12α22

α21α11 + α22α21 α21α12 + α2
22

)
− (α11 + α22)

(
α11 α12
α21 α22

)

+

(
(α11α22 − α21α12) 0

0 (α11α22 − α21α12)

)
=

(
0 0
0 0

)

Φαίνεται ότι p(A) = 0. Αυτό ισχύει για οποιοδήποτε A ∈ Rn×n.
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Θεώρημα Cayley-Hamilton

Έστω το χαρακτηριστικό πολυώνυμο p(λ) = det (λI− A). Τότε

p(A) = 0n×n .
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ΠΡΟΣΟΧΗ

Η det είναι συνάρτηση όλων των στοιχείων του μητρώου, π.χ. για n = 2, όλων
των

α11 − λ, α12, α21, α22 − λ

Επομένως ΔΕΝ μπορούμε να πούμε ότι p(A) = det (A− AI)det (0) = 0.
Απόδειξη Cayley-Hamilton Αργότερα ..
Ένα άλλο θέμα: Έστω ότι Ax = λx. Τότε A(γx) = λ(γx), δηλ. αν πολλαπλασιά-
σουμε το ιδιοδιάνυσμα με βαθμωτό, έχουμε πάλι ιδιοδιάνυσμα και η ιδιοτιμή πα-
ραμένει αμετάβλητη.
Αν όμως γράψουμε (γA)x = (γλ)x δηλ. αν πολλαπλασιάσουμε το μητρώο με
βαθμωτό, το ιδιοδιάνυσμα παραμένει αμετάβλητο και η ιδιοτιμή πολλαπλασιάζεται
με το βαθμωτό.
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Μια (ακόμα) ιδιομορφία των μητρώων

... επιπλέον των AB ̸= BA, = 0 ακόμα και αν ̸= 0, B ̸= 0, ..... που έπεται από το
θεώρημα Cayley-Hamilton:

Για τις δυνάμεις An = −γn−1An−1 − γn−2An−2 − · · ·+ γ1A+ γ0I.

Δηλ. για κάθε μητρώο A ∈ Rn×n, οι δυνάμεις μεγαλύτερες
από n − 1 μπορούν να γραφτούν ως γραμμικός συνδυασμός
χαμηλοτέρων δυνάμεων!

Για το αντίστροφο (αν υπάρχει)

0 = An + γn−1An−1 + · · ·+ γ1A+ γ0I

= A−1
(
An + γn−1An−1 + · · ·+ γ1A+ γ0I

)
επομένως

A−1 = − 1

γ0

(
An−1 + γn−1An−2 + · · ·+ γ1I

)
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Παράδειγμα

Δίνεται A =

(
−36 9
−27 27

)
det(λI− A) = λ2 + 9λ− 729

= λ2 − −9︸︷︷︸
trace(A)

λ −729︸ ︷︷ ︸
det(A)

p(A) = A2 + 9A− 729I(
0 0
0 0

)
=

(
1053 −81
243 486

)
+ 9

(
−36 9
−27 27

)
− 729

(
1 0
0 1

)
⇒

729I = A2 + 9I ⇒ 729A−1 = A+ 9I

A−1 =
1

729

((
−36 9
−27 27

)
+ 9

(
1 0
0 1

))
=

1

729

(
−27 9
−27 36

)
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Ανακεφαλαίωση

Βασικός ορισμός

Για κάθε μητρώο A ∈ Rn×n και μεταβλητή λ, η ορίζουσα p(λ) = det (λI− A)
είναι πολυώνυμο βαθμού n. Λέγεται χαρακτηριστικό πολυώνυμο και αν το
γράψουμε

p(λ) = λn + γn−1λ
n−1 + · · ·+ γ1λ+ γ0

τότε γn−1 = −trace (A) και γ0 = (−1)ndet(A).

Το πολυώνυμο έχει ακριβώς n ρίζες λ1, · · ·λn ∈ Cn που αποκαλούμε
ιδιοτιμές του .
Γράφουμε p(x) = (x− λ1)

µ1 · · · (x− λk)
µk όπου k ≤ n είναι το πλήθος των

διαφορετικών ιδιοτιμών, 1 ≤ µj ≤ k είναι η πολλαπλότητα της ιδιοτιμης λj και∑k
j=1 µk = n. Το µj λέγεται αλγεβρική πολλαπλότητα της ιδιοτιμής λj.

Για κάθε ιδιοτιμή λ, υπάρχει ιδιοδιάνυσμα x ∈ Cn τ.ώ. Ax = λx.
Ισχύει ότι p(A) = 0 (θεώρημα Cayley-Hamilton).
τα ιδιοζεύγη (ιδιοτιμές και ιδιοδιανύσματα) μητρώων παίζουν πολύ
σημαντικό ρόλο σε πληθώρα εφαρμογών.
Διαφορετικά μητρώα μπορεί να έχουν ίδιο χαρακτηριστικό πολυώνυμο.
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Άλλα πολυώνυμα: Ελάχιστο πολυώνυμο (minimal polynomial) I

Είδαμε ότι αν pn είναι το χ.π. του A ∈ Rn×n τότε pn(A) = 0. Το ερώτημα είναιαν
υπάρχουν πολυώνυμα μικρότερου βαθμού, π.χ. qk, k < n τ.ώ. qk(A) = 0.

Ορισμός

Το ελάχιστο πολυώνυμο ενός μητρώου A ∈ Rn×n είναι το ελάχιστου βαθμού
πολυώνυμο q για οποίο ισχύει ότι q(A) = 0. Αν θέσουμε το μεγιστοβάθμιο
συντελεστή ίσο με 1, τότε το ελάχιστο πολυώνυμο είναι μονικό και μοναδικό.

Το ελάχιστο πολυώνυμο του διαιρεί ακριβώς το χ.π. του A.

2 1 0 0
0 2 1 0
0 0 2 1
0 0 0 2

,
p(x) = (x− 2)4, q(x) = (x− 2)42 1 0 0
0 2 1 0
0 0 2 0
0 0 0 2

,
2 0 0 0
0 2 1 0
0 0 2 1
0 0 0 2

, p(x) = (x− 2)4, q(x) = (x− 2)3

2 1 0 0
0 2 0 0
0 0 2 1
0 0 0 2

,
2 1 0 0
0 2 0 0
0 0 2 0
0 0 0 2

, p(x) = (x− 2)4, q(x) = (x− 2)2
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Άλλα πολυώνυμα: Ελάχιστο πολυώνυμο (minimal polynomial) II

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

, p(x) = (x− 2)4, q(x) = x− 2
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Γραμμική ανεξαρτησία ιδιοδιανυσμάτων

Πρόταση
Τα ιδιοδιανύσματα που αντιστοιχούν σε διαφορετικές ιδιοτιμές είναι γραμμικά
ανεξάρτητα.

Σχέδιο απόδειξης: Έστω ότι Ax1 = λ1x1, Ax2 = λ2x2 όπου λ1 ̸= λ2. Τότε αν υπάρχουν μη μηδενικά
γ1, γ2 τ.ώ.

0 = γ1x1 + γ2x2 = γ1Ax1 + γ2Ax2 = γ1λ1x1 + γ2λ2x2.

Ισχύει επίσης ότι 0 = λ2(γ1x1 + γ2x2) = λ2γ1x1 + λ2γ2x2 επομένως

γ1λ1x1 +���γ2λ2x2 = λ2γ1x1 +���λ2γ2x2

δηλ. 0 = γ1λ1x1 − λ2γ1x1 επομένως λ1 = λ2, άρα άτοπο.

Πόρισμα

Αν ένα μητρώο A ∈ Cn×n έχει n διαφορετικές ιδιοτιμές, τότε θα έχει n
γραμμικά ανεξάρτητα ιδιοδιανύσματα.
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Διαγωνιοποίηση μητρώου I
Έστω ότι γνωρίζουμε n ιδιοζεύγη (λj, xj) του A ∈ Cn×n. Τότε

Ax1 = λ1x1,Ax2 = λ2x2, ...,Axn = λnxn

Συλλέγουμε και διατυπώνουμε με μητρώα:

A[x1, x2, ..., xn] = [x1...., xn]


λ1

λ2

. . .
λn

 ,

Επομένως

AX = XΛ,

όπου Λ = diag([λ1, ..., λn]) και X = [x1...., xn].
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Διαγωνιοποίηση μητρώου II

ΠΡΟΣΕΞΤΕ Αν το X είναι αντιστρέψιμο,

X−1AX = Λ,

δηλ. χρησιμοποιώντας τα μητρώα X (με στήλες τα δεξιά ιδιοδιανύσματα)
και X−1 (με στήλες του X−∗ τα αριστερά ιδιοδιανύσματα) διαγωνιοποιή-
σαμε το A.

Κάθε μητρώο για το οποίο υπάρχουν n γραμμικά ανεξάρ-
τητα ιδιοδιανύσματα χαρακτηρίζεται ως διαγωνιοποιήσιμο,
ειδάλλως λέγεται μη διαγωνιοποιήσιμο.

Θεώρημα: Ένα μητρώο είναι διαγωνιοποιήσιμο αν και μόνον
αν το ελάχιστο πολυώνυμο του μητρώου έχει απλές ρίζες.
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Ιδιοδιανύσματα: Δεξιά και Αριστερά
Θα συμβολίζουμε x∗ = x̄⊤ και A∗ = Ā⊤ τα συζυγές (ή ερμιτιανό) ανάστροφο
του (μιγαδικού) διανύσματος x ∈ Cn και του (μιγαδικού) μητρώου A.
Αν ∈ Cn×n και λ ∈ Λ(A) τότε det (λI − A) = 0 άρα αν συμβολίσουμε με r την
τάξη του λI− A,

r = rank(λI− A) ≤ n− 1.

Αφού το μητρώο είναι τετραγωνικό, οι διαστάσεις του μηδενόχωρου και του αρι-
στερού μηδενόχωρου του A− λI είναι ίσες και

1 ≤ n− r = dim(null(λI− A)) = dim(null(λ̄I− A∗)) ≤ n− 1

Ιδιοδιανύσματα είναι τα μέλη των μηδενόχωρων αυτών:
δεξιά ιδιοδιανύσματα της ιδιοτιμής λ είναι τα x ∈ null(λI− A) δηλ. τ.ώ. Ax = λx.

αριστερά ιδιοδιανύσματα της ιδιοτιμής λ είναι τα y ∈ null(λ̄I− A∗), δηλ. τ.ώ.
y∗A = λy∗.

Άρα για κάθε ιδιοτιμή λ υπάρχουν
διανύσματα x ∈ null(A− λI) ώστε Ax = λx που λέγονται δεξιά ιδιοδιανύσματα

του A για την ιδιοτιμή λ.
διανύσματα y ∈ null(A∗ − λ̄I) ώστε y∗A = λy∗που λέγονται αριστερά

ιδιοδιανύσματα του A για την ιδιοτιμή λ.
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Ανάπτυγμα μητρώου συναρτήσει ιδιοτιμών και ιδιοδιανυσμάτων

Αν το μητρώο A διαθέτει n γ.α. ιδιοδιοδιανύσματα, τότε A = XΛX−1 όπου Λ το
διαγώνιο μητρώο των ιδιοτιμών και X το μητρώο των ιδιοδιανυσμάτων.
Θυμηθείτε τη γραφή γινομένου μητρώων ως άθροισμα μητρώων πρώτης τάξης
(στήλη του 1ου επί γραμμή του 2ου).
Θέτουμε για ευκολία Y = (X−1)∗, δηλ. Y είναι το συζυγές αντίστροφο του X, τότε
μπορούμε να γράψουμε το A με βάση το φασματικό ανάπτυγμα.

A = XΛY∗

= λ1x1y∗1 + λ2x2y∗2 + · · ·+ λnxny∗n
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Ιδιόχωροι και γεωμετρική πολλαπλότητα ιδιοτιμής

Προσοχή: Για κάθε διαφορετική ιδιοτιμή λj:

o μηδενόχωρος null(λjI− A) λέγεται ιδιόχωρος της ιδιοτιμής λj.

Η διάσταση του ιδιόχωρου χαρακτηρίζεται ως γεωμετρική πολλαπλότητα
της ιδιοτιμής λj.

Για κάθε ιδιοτιμή ισχύει ότι

1 ≤ γεωμ. πολλ/τα(λj) ≤ αλγεβρ. πολλ/τα.(λj)

Αν μία ή περισσότερες ιδιοτιμές ενός μητρώου έχουν γεωμετρική
πολλαπλότητα μικρότερη της αλγεβρικής τους, δηλ.

1 ≤ γεωμ. πολλ/τα(λj) < αλγεβρ. πολλ/τα.(λj)

αυτές λέγονται ελλειμματικές ή ελαττωματικές ή ελλιπείς 4 και το μητρώο
ελλειμματικό ή ελαττωματικά ή ελλιπή.

Τα ελλειμματικά μητρώα είναι μη διαγωνιοποιήσιμα.

4defective
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Μητρώα: διαγωνιοποιήσιμα και μη

Κάθε μητρώο n× n έχει ακριβώς n ιδιοτιμές. Μπορεί όμως να μην
υπάρχουν n γραμμικά ανεξάρτητα ιδιοδιανύσματα οπότε δεν θα είναι
διαγωνιοποιήσιμο.

Παράδειγμα =

(
λ 1
0 λ

)
Κάθε διάνυσμα x τ.ώ Ax = λx είναι πολλαπλάσιο

του x = [1, 0]⊤.

Παράδειγμα A =

(
3 4

3
−3 −1

)
. Έχει ιδιοτιμή λ1 = 1 με πολλαπλότητα

µ1 = 2. Κάθε διάνυσμα x τ.ώ Ax = λx είναι πολλαπλάσιο του x = [− 2
3 , 1]

⊤.

Αν υπάρχουν n γραμμικά ανεξάρτητα ιδιοδιανύσματα, τότε το μητρώο των
ιδιοδιανυσμάτων X είναι αντιστρέψιμο και επομένως θα είναι
διαγωνιοποιήσιμο. Ένα μητρώο n× n είναι διαγωνιοποιήσιμο αν και μόνον
αν έχει n γραμμικά ανεξάρτητα ιδιοδιανύσματα.
Αν ένα μητρώο n× n έχει n διακριτές ιδιοτιμές, θα έχει n γ.α.
ιδιοδιανύσματα και θα είναι διαγωνιοποιήσιμο.
Αν ένα μητρώο έχει επαναλαμβανόμενες ιδιοτιμές, το μητρώο ενδέχεται
να μην είναι διαγωνιοποιήσιμο. Για να εξακριβωθεί το κατά πόσον είναι
διαγωνιοποιήσιμο, χρειάζεται περισσότερη διερεύνηση. Π.χ.
αποδεικνύεται ότι τα δύο τελευταία μητρώα δεν είναι διαγωνιοποιήσιμα.

Γραμμική Άλγεβρα - Δ11 Ίχνος και Ορίζουσα 3/XII/2025 51 / 76



Ομοιότητα μητρώων και ιδιότητες I

Ομοιότητα μητρώων

Δύο μητρώα A, B ∈ Cn×n λέγονται όμοια αν υπάρχει αντιστρέψιμο P ∈ Cn×n

τέτοιο ώστε P−1AP = B.

Αν τα μητρώα A, B είναι όμοια τότε έχουν ίδια :

τάξη

ορίζουσα και ίχνος

χαρακτηριστικό πολυώνυμο, ιδιοτιμές και γεωμετρική τους πολλαπλότητα.

ελάχιστο πολυώνυμο

Ενδιαφέρουσα ιδιότητα: Αν A, B ∈ Cn×n τότε τα γινόμενα F = AB και G = BA θα
έχουν τις ίδιες ιδιοτιμές. Απόδειξη : Αν ένα από τα , B είναι αντιστρέψιμο, έστω
το A, τότε τα F,G είναι όμοια ( A−1(AB)A = BA).. Αν κανένα από τα μητρώα δεν
είναι αντιστρέψιμα, έστω ότι x ̸= 0 για το οποίο Bx = 0. Άρα ABx = 0 άρα το 0
είναι ιδιοτιμή του AB. Επίσης υπάρχει y ̸= 0 τ.ώ. Ay = 0. Άρα (BA)y = 0, άρα το 0
είναι ιδιοτιμή και του BA. Προσοχή: Οι ιδιοτιμές του γινομένου δεν είναι ίσες με
τα γινόμενα των ιδιοτιμών.
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Πολλαπλές ιδιοτιμές και ελλειμματικά μητρώα

Σε κάθε απλή ιδιοτιμή (αλγ. πολλ/τας ίσης με 1) αντιστοιχούν ένα δεξιό και
ένα αριστερό ιδιοδιάνυσμα.

Τι γίνεται όταν μια ιδιοτιμή, π.χ. λj, έχει αλγ. πολλ/τα µj > 1?

Το κρίσιμο ερώτημα είναι κατά πόσον υπάρχουν µj γραμμικά ανεξάρτητα
ιδιοδιανύσματα5

Είναι κρίσιμο γιατί αν για κάθε ιδιοτιμή υπάρχουν τόσα γραμμικά
ανεξάρτητα ιδιοδιανύσματα όσα και η αλγεβρική της πολλαπλότητα, τότε το
μητρώο δεν είναι ελλειμματικό, άρα είναι διαγωνιοποιήσιμο.

Επίσης τότε μπορούμε με τα ιδιοδιανύσματα να κατασκευάσουμε βάση για
όλον το διανυσματικό χώρο (Rn ή Cn) που μπορεί να έχει πλεονεκτήματα
συγκριτικά με την τυπική βάση.

5Στη συνέχεια θα εννοούμε τα δεξιά ιδιοδιανύσματα, αλλά το ίδιο ισχύει για τα αριστερά.
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Ιδιότητες ιδιοζευγών συμμετρικών/ερμιτιανών μητρώων I

Τα πραγματικά συμμετρικά (A = A⊤ ∈ Rn×n) καθώς και τα μιγαδικά ερμιτιανά
(A = Ā⊤ ∈ Cn×n) μητρώα έχουν πολλές ευχάριστες ιδιότητες που διευκολύ-
νουν σημαντικά σε πολλές περιπτώσεις.

Οι παρακάτω αποδείξεις είναι προαιρετικές.
Αν το μητρώο είναι πραγματικό συμμετρικό, A = A⊤ ∈ Rn×n και αν το λ είναι
ιδιοτιμή,

Ax = λx,A = A⊤ ∈ Rn×n ⇒ x∗A⊤ = λ̄x∗

⇒ (x∗A)x = λ̄∥x∥2 = x∗(Ax) = λ∥x∥2

Αν το μητρώο είναι ερμιτιανό, A∗ = A και τότε αν λ είναι ιδιοτιμή,

Ax = λx,A = A∗ ∈ Cn×n ⇒ x∗A∗ = λ̄x∗

⇒ (x∗A)x = ∥x∥2λ̄ = x∗(Ax) = λ∥x∥2

άρα, επειδή ∥x∥ ̸= 0,

λ = λ̄ ⇒ λ ∈ R.
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Ιδιότητες ιδιοζευγών συμμετρικών/ερμιτιανών μητρώων II

Αποδείξαμε ότι :

Οι ιδιοτιμές των ερμιτιανών και των πραγματικών συμμετρικών μητρώων είναι
όλες πραγματικές. Επίσης, αν το μητρώο είναι πραγματικό και συμμετρικό,
A = A⊤ ∈ Rn×n, τότε και τα ιδιοδιανύσματα είναι πραγματικά.

Έστω ότι A = A⊤ ∈ Rn×n και ότι λ ̸= µ είναι δύο διακριτές ιδιοτιμές του και ότι

Ax = λx, Ay = µy

y⊤Ax = λy⊤x = y⊤A⊤x

(Ay)⊤x = µy⊤x ⇒ µ(y⊤x) = λ(y⊤x)

οπότε είτε λ = µ ή y⊤x = 0. Αποδείξαμε ότι

Τα ιδιοδιανύσματα ενός πραγματικού συμμετρικού μητρώου που αντιστοιχούν
σε διαφορετικές ιδιοτιμές είναι πάντοτε ορθογώνια μεταξύ τους.
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Ιδιότητες ιδιοζευγών συμμετρικών/ερμιτιανών μητρώων III

Προσοχή: Η συζήτηση από την τρέχουσα διαφανεια μέχρι τη διαφάνεια πριν τη
Σύνοψη Ιδιοτήτων Πραγματικών Συμμετρικών Μητρώων είναι ΠΡΟΑΙΡΕΤΙΚΗ
Τι συμβαίνει για τα ιδιοδιανύσματα που αντιστοιχούν σε πολλαπλές ιδιοτιμές?
Περιοριζόμαστε στην πραγματική περίπτωση, A = A⊤ ∈ Rn×n.
Έστω ότι Aq1 = λ1q1 όπου επιλέξαμε το q1 να είναι μοναδιαίο. Τότε μπορούμε
να επιλέξουμε τις στήλες του μητρώου Q1 = [q1, ⋆, · · · , ⋆] ώστε Q⊤

1 Q1 = I.
Δηλαδή, οι υπόλοιπες στήλες του Q1 επελέγησαν ορθογώνιες στο q1 (κάτι που
μπορούμε να υλοποιήσουμε χωρίς μεγάλη δυσκολία, π.χ. με τη διαδικασίαGram-
Schmidt).
Άρα

AQ1 = [λ1q1, ⋆, · · · , ⋆] =
Q1︷ ︸︸ ︷

[q1, ⋆, · · · , ⋆][λ1e1, ⋆, · · · , ⋆]

Q⊤
1 AQ1 =


λ1 ⋆ ⋆ · · · ⋆
0 ⋆ ⋆ · · · ⋆
...

...
0 ⋆ ⋆ · · · ⋆

 =


λ1 ⋆ ⋆ · · · ⋆
0 ⋆ ⋆ · · · ⋆
...

...
0 ⋆ ⋆ · · · ⋆

 =

(
λ1 ⋆
0 A2

)
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Ιδιότητες ιδιοζευγών συμμετρικών/ερμιτιανών μητρώων IV
όπου A2 ∈ R(n−1)×(n−1). Έστω ότι μία ιδιοτιμή του A2 είναι η λ2 (που μπορεί να
είναι ίση ή διαφορετική του λ1). Μπορούμε να κατασκευάσουμε το μητρώο

Q2 =

(
1 0 0 · · · 0
0 q2 ⋆ · · · ⋆

)
έτσι ώστε A2q2 = λ2q2 και το Q2 είναι ορθογώνιο. Επομένως

(Q⊤
1 AQ1)Q2 = Q2


λ1 ⋆ ⋆ · · · ⋆
0 λ2 ⋆ · · · ⋆
0 0
...

... A3
0 0


άρα

Q⊤
2 (Q

⊤
1 AQ1)Q2 =


λ1 ⋆ ⋆ · · · ⋆
0 λ2 ⋆ · · · ⋆
0 0
...

... A3
0 0


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Ιδιότητες ιδιοζευγών συμμετρικών/ερμιτιανών μητρώων V

Συνεχίζοντας με αυτόν τον τρόπο, ανεξαρτήτως των πολλαπλοτήτων των ιδιοτι-
μών, θα έχουμε υπολογίσει ορθογώνια μητρώα Q1, ...,Qn−1 τέτοια ώστε

Q⊤
n−1 · · ·Q⊤

2 Q
⊤
1 AQ1Q2 · · ·Qn−1 =



λ1 ⋆ ⋆ · · · ⋆
0 λ2 ⋆ · · · ⋆
... 0 λ3 ⋆ · · ·

...
. . .

...
0 λn


Όπως γνωρίζουμε, το γινόμενο ορθογώνιων μητρώων είναι και αυτό ορθογώνιο,
επομένως το Q = Q1Q2 · · ·Qn−1 είναι ορθογώνιο.
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Ιδιότητες ιδιοζευγών συμμετρικών/ερμιτιανών μητρώων VI

Αποδείξαμε ότι για κάθε συμμετρικό μητρώο A, υπάρχει ορθογώνιο μητρώο
Q τέτοιο ώστε το Q⊤AQ = T να είναι άνω τριγωνικό και να περιέχει τις ιδιοτι-
μές του A στη διαγώνιο. Λόγω συμμετρίας του , (Q⊤AQ)⊤ = T⊤ = Q⊤AQ = T
επομένως το T είναι τριγωνικό και συμμετρικό άρα θα είναι διαγώνιο!

Επομένως:

Ιδιότητες

Ανεξάρτητα από τις ενδεχόμενες πολλαπλότητες των ιδιοτιμών:Kάθε
πραγματικό συμμετρικό μητρώο είναι διαγωνιοποιήσιμο.

Παρατηρήσεις :

Στην παραπάνω απόδειξη, θα μπορούσαμε να χρησιμοποιήσουμε
ορθομοναδιαία μητρώα αντί για ορθογώνια, δηλ. U ∈ Cn×n τέτοια ώστε
U∗U = I. Τότε δεν χρειάζεται να υποθέσουμε ότι το μητρώο είναι
συμμετρικό και μπορούμε να δείξουμε ότι για κάθε μητρώο A, υπάρχει
ορθομοναδιαίο μητρώο U τέτοιο ώστε το U∗AU = T ∈ Cn×n να είναι άνω
τριγωνικό.
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Ιδιότητες ιδιοζευγών συμμετρικών/ερμιτιανών μητρώων VII

Κάθε συμμετρικό πραγματικό ή ερμιτιανό μητρώο διαθέτει ακριβώς n ιδιο-
διανύσματα που είναι κάθετα μεταξύ τους. Δηλαδή διαθέτει πλήρες σύνολο
ορθογώνιων ιδιοδιανυσμάτων.

A[q1, ...,qn] = [q1, ...,qn]Λ ⇔ [q1, ...,qn]⊤A[q1, ...,qn] = Λ

Q⊤AQ = Λ

Φασματικό ανάπτυγμα πραγματικού συμμετρικού/μιγαδικού ερμιτιανού
μητρώου

Αν A = A⊤ ∈ Rn×n με ιδιοζεύγη {(λi,qi), i = 1, .., n} τότε
A = λ1q1q⊤

1 + · · ·λnqnq⊤
n

Αν A = A∗ ∈ Cn×n με ιδιοζεύγη {(λi,qi), i = 1, .., n} τότε
A = λ1q1q∗

1 + · · ·λnqnq∗
n
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Σύνοψη ιδιοτήτων πραγματικών συμμετρικών μητρώων

Ιδιότητες

Αν A = A⊤ ∈ Rn×n τότε

όλες οι ιδιοτιμές είναι πραγματικές,

υπάρχουν n γραμμικά ανεξάρτητα ιδιοδιανύσματα, {q1, . . . ,qn},
που είναι βάση για τον χώρο,

τα ιδιοδιανύσματα είναι κάθετα μεταξύ τους, άρα Q⊤Q = I,

τα ιδιοδιανύσματα είναι πραγματικά αν το μητρώο είναι πραγματικό,

το μητρώο είναι διαγωνιοποιήσιμο,

Q⊤AQ = Λ.

Ισχύει το φασματικό ανάπτυγμα: A = λ1q1q⊤
1 + · · ·λnqnq⊤

n

Παρατήρηση 4

Ανάλογα αποτελέσματα ισχύουν για τα ερμιτιανά μητρώα ή A = A∗ ∈ Cn×n.
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Συμμετρικά θετικά ορισμένα μητρώα
Έχουμε αναφέρει σε προηγούμενη διάλεξη ότι πολλά μητρώα στις εφαρμογές
έχουν την ιδιότητα ότι είναι ΣυμμετρικάΘετικάΟρισμένα. Είπαμε ότι για τα μητρώα
είναι κάτι ανάλογο της θετικότητας στους αριθμούς.

Ορισμός 3

Δίνεται συμμετρικό A ∈ Rn×n. Οι παρακάτω ιδιότητες είναι ισοδύναμες:
1 Για κάθε x ̸= 0, x⊤Ax > 0.
2 Οι ιδιοτιμές του A είναι όλες θετικές.
3 Για k = 1, ..., n, det A1:k,1:k > 0.
4 Αν A = LU είναι η παραγοντοποίηση LU του A, όλοι οι οδηγοί (τα διαγώνια

στοιχεία του U) είναι θετικοί.
Αν ισχύει μία από αυτές, το μητρώο καλείται συμμετρικό θετικά ορισμένο (ΣΘΟ).

Παρατήρηση 5
Όταν ένα μητρώο είναι ΣΘΟ τότε

όλα τα στοιχεία στη διαγώνιο είναι θετικά.
είναι αντιστρέψιμο.
υπάρχει κάτω τριγωνικό L τέτοιο ώστε A = LL⊤.
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Μέθοδος δύναμης
Πρόκειται για μια απλή μέθοδο που μπορεί να χρησιμοποιηθεί ακόμα και για
πολύ μεγάλα μητρώα (υπο περιορισμούς). Με τη μέθοδο περοσεγγίζουμε ένα
ιδιοδιάνυσμα κάθε φορά (αυτό που αντιστοιχεί στην μεγαλύτερη σε απόλυτη τιμή
ιδιοτιμή).

Αν η μέγιστη σε απόλυτη τιμή ιδιοτιμή, έστω λmax, ενός A ∈ Cn×n είναι μο-
ναδική με αντίστοιχο ιδιοδιάνυσμα q1, και έστω x ∈ Cn τυχαίο, τ.ώ. x∗q1 ̸= 0,
τότε η ακολουθία των διανυσματων {Ax,A2x, . . . ,Akx, . . .} τείνει σε διάνυσμα
του ιδιόχωρου του λmax.

Σε περίπτωση που η μέγιστη σε απόλυτη τιμή ιδιοτιμή είναι μοναδική, τότε τείνει
σε διάνυσμα συγγραμμικό του q1. (προσεγγίζεται το μέγιστο ιδιοδιάνυσμα!)

Akx = λk1(γ1q1 + (
λ2

λ1
)kq2 + · · ·

Όπως φαίνεται, για επαρκώς μεγάλο k, η κατεύθυνση q1 θα υπερτερεί, και με
βάση κάποια κριτήρια, το Akx

∥Akx∥ μπορεί να χρησιμοποιηθεί ως προσέγγιση του q1.
Η διαδικασία είναι ιδιαίτερα αποτελεσματική αν |λ1| είναι πολύ μεγαλύτερο από

το max{|λ2|, ..., |λn|}. Επίσης για μεγάλα k, το πηλίκο
(
x∗Akx
x∗x

)1/k
θα προσεγγίζει

τη μέγιστη ιδιοτιμή.
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Συμπληρωματικά θέματα (δεν συζητήθηκαν στην
τάξη)

ΚΑΛΕΣ ΓΙΟΡΤΕΣ ! !!!
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Ιδιοτιμές και ιδιοδιανύσματα δυνάμεων μητρώου

Για κάθε A, αν Ax = λx τότε Akx = λkx
ομοίως γAjx+ δAkx = γλjx+ δλkx
άρα αν οι ιδιοτιμές του A είναι {λ1, ..., λn} τότε οι ιδιοτιμές του
πολυωνύμου q(A) = γsAs + · · ·+ γ0I, είναι

q(λ1) = γsλ
s
1 + · · ·++γ1λ1 + γ0I

...
...

...
q(λn) = γsλ

s
n + · · ·+ γ1λn + γ0I

δηλ. οι ιδιοτιμές του q(A) είναι οι τιμές {q(λ1), ....,q(λn)}.

Συμπεράσματα
Επομένως αν γνωρίζουμε τις ιδιοτιμές του A μπορούμε εύκολα να
υπολογίσουμε τις ιδιοτιμές για οποιοδήποτε πολυώνυμο q(A).
Τα ιδιοδιανύσματα του q(A) είναι ίδια με τα ιδιοδιανύσματα του A.
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Διαχείριση δυνάμεων μητρώου μέσω διαγωνιοποίησης

Έστω A ∈ Rn×n και ότι γνωριζουμε X,Λ όπως πριν, δηλ. X−1AX = Λ.

A = XΛX−1

Ak = (XΛX)k = (XΛX−1)(XΛX−1) · · · (XΛX−1)

= XΛ(X−1X)Λ(X−1X)Λ · · · (X−1X)ΛX−1

= XΛkX−1.

Παρατήρηση: Ο υπολογισμός του Ak ανάγεται στον εύκολο υπολογισμό τουΛk και σε δύο επιμέρους
πολλαπλασιασμούς μητρώων, π.χ. XΛk → (XΛk)X−1.

Πέραν του υπολογισμού του Ak, η διάσπαση του μητρώου σε A = XΛX−1 διευκολύνει στην διερεύ-
νηση του παρακάτω ζητήματος.

Πώς συμπεριφέρεται το Ak για μεγάλες τιμές του k?

Υπάρχει κάτι το ιδιαίτερο?

Υπάρχει όριο, δηλ. κάποιο B τ.ω. limk Ak = B υπό την έννοια ότι ∀ϵ > 0, ∃k̂ τ.ώ.
∥Ak − B∥ < ϵ, ∀k > k̂?
Ποιό είναι αυτό?
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Παράδειγμα I

A =

 2
3

− 1
3

0

− 1
3

2
3

0

− 1
3

1
3

1
3

 ,Λ =

 1
3

0 0
0 1 0
0 0 1

3

 , X =

0 −
√

3
3

√
2

2

0
√
3
3

√
2

2

1
√
3
3

0



Ak =


0 −

√
3

3

√
2

2

0
√

3
3

√
2

2

1
√

3
3

0


3−k 0 0

0 1 0

0 0 3−k




1
2

− 1
2

1

−
√

3
2

√
3

2
0√

2
2

√
2

2
0



Εκτελώντας τον πολλαπλασιασμό για οποιοδήποτε k επιθυμούμε, προκύπτει το ζητούμενο, αφού
στρογγυλέψουμε

A4 =

(
0.5062 −0.4938 0
−0.4938 0.5062 0
−0.4938 0.4938 0.0123

)
,A10 =

(
0.5000 −0.5000 0
−0.5000 0.5000 0
−0.5000 0.5000 0.0000

)

Οι τιμές έχουν υποστεί στρογγύλευση.
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Παράδειγμα II

Καθώς k → ∞,

Ak =

0 −
√

3
3

√
2

2

0
√

3
3

√
2

2

1
√

3
3

0

(3−k 0 0
0 1 0
0 0 3−k

)
1
2

− 1
2

1

−
√
3
2

√
3

2
0√

2
2

√
2

2
0


οι όροι στο διαγώνιο μητρώο Λk που αντιστοιχούν σε ιδιοτιμές |λ| < 1 τείνουν στο 0, επομένως

lim
k→∞

Ak =

0 −
√
3

3

√
2

2

0
√
3

3

√
2

2

1
√
3

3
0

(0 0 0
0 1 0
0 0 0

)
1
2

− 1
2

1

−
√
3

2

√
3

2
0√

2
2

√
2

2
0



=

−
√
3
3√
3

3√
3

3

(−√
3
2

√
3

2
0
)
=

 1
2

− 1
2

0

− 1
2

1
2

0

− 1
2

1
2

0


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Συνοδευτικό μητρώο
Από τα πολυώνυμα στα μητρώα

Για κάθε πολυώνυμο p βαθμού n, υπάρχει μητρώο A ∈ Cn×n με χ.π. ίδιο με p.

Το p(z) = λn + αn−1λ
n−1 + · · ·+ α1λ+ α0 είναι το χ.π. του

A =


0 0 · · · 0 −α0

1 0 · · · 0 −α1

0 1 0 · · · −α2

...
...

. . .
...

...
0 0 · · · 1 −αn−1

 , το συνοδευτικό μητρώο του p.

(υπολ. ριζών πολυωνύμου βαθμού n) ≡ ( υπολ. ιδιοτιμών συνοδευτικού μητρώου )
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Επίλυση γραμμικού συστήματος μέσω φασματικού αναπτύγματος

Αν γνωρίζουμε τα X,Λ ώστε X−1AX = Λ και αναζητούμε το x τ.ώ. Ax = b,

Ax = b
X−1AXX−1x = X−1b

οπότε

x = XΛ−1X−1b

=
1

λ1
x1(y∗1b) +

1

λ2
x2(y∗2b) + · · · 1

λn
xn(y∗nb)

ΠΡΟΣΟΧΗ Ο τρόπος αυτός επίλυσης σπάνια συμφέρει ...
πιο χρήσιμο είναι η πληροφορία που παρέχει αναδεικνύοντας ορισμένα χαρα-
κτηριστικά της λύσης! π.χ. πως μεγεθύνονται οι παράγοντες που αντιστοιχούν σε
όρους όπου y∗j b ̸= 0 και η απόλυτη τιμή |λj| είναι πολύ μικρή (αν είναι 0, το μη-
τρώο δεν αντιστρέφεται).
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Επεκτάσεις

ΠΡΟΣΟΧΗ Τα παραπάνω αποτελέσματα ισχύουν μόνον όταν έχουμε ένα εμπλε-
κόμενο μητρώο και δυνάμεις του.
Γενικά - δύο αρνητικά αποτελέσματα και ένα που θα εξετάσουμε:

Λ(A+ B) ̸= Λ(A) + Λ(B)

υπάρχουν λ ∈ Λ(AB) τέτοια ώστε λ ̸= λi(A)λj(B) για κανένα i, j

Το πρώτο δεν εκπλήσσει, εξάλλου det (A) + det (B) ̸= det (A) + det (B).

Σχετικά με το γινόμενο: Θυμηθείτε ότι det (AB) = det (BA) = det (A)det (B).
Για τις ιδιοτιμές δεν ισχύει κάτι αντίστοιχο με την 1η ισότητα. Υπάρχει όμως κάτι
αντίστοιχο με τη δεύτερη ισότητα.

Στη συνέχεια εξετάζουμε πως συνδέονται οι ιδιοτιμές Λ(AB) με τις ιδιοτιμές Λ(BA).
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Ιδιοτιμές γινομένου μητρώων (προαιρετικό)

Θα επεκτείνουμε το αποτέλεσμα ότι πο ιδιοτιμές του AB είναι ίδιες με τις ιδιοτιμές
του BA. Έστω ότι A ∈ Rm×n, B ∈ Rn×m. Προσοχή, τα μητρώα A, B δεν είναι κατ’
ανάγκη τετραγωνικά, το γινόμενό τους όμως πρέπει να είναι ! Τότε αν

X =

(
I A
0 I

)
⇒ X−1 =

(
I −A
0 I

)
(
I −A
0 I

)(
AB 0m,n
B 0n,n

)(
I A
0 I

)
=

(
0m,m 0m,n
B BA

)
Έστω ότι m ≥ n, τότε

(λ1(AB), . . . , λn(AB), λn+1(AB), . . . λm(AB),

n︷ ︸︸ ︷
0, . . . 0) = (λ1(BA), . . . , λn(BA), 0, . . . 0︸ ︷︷ ︸

m

)

επομένως οι ιδιοτιμές του AB είναι ίδιες με τις ιδιοτιμές του BA συν επιπλέον μία
μηδενική ιδιοτιμή πολλαπλότητας m− n.

Λ(AB) = Λ(BA) ∪ {0}
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Ιδιοδιανύσματα και μεταθετικότητα

Γνωρίζουμε ότι γενικά AB ̸= BA. Υπάρχουν προφανώς ειδικές περιπτώσεις που
η μεταθετικότητα ισχύει (π.χ. διαγώνια μητρώα). Τι άλλο μπορούμε να πούμε?

Θεώρημα 1

Αν A, B ∈ Rn×n είναι διαγωνιοποιήσιμα με τα ίδια ιδιοδιανύσματα, δηλ.

∃ X τ.ώ. X−1AX = ΛA, X−1BX = ΛB.

τότε AB = BA. Επίσης, αν AB = BA τότε υπάρχει κοινός διαγωνιοποιητής X.

Παράδειγμα 6

A =

(
2 3
0 5

)
, B =

(
3 −4
0 −1

)

AB =

(
6 −11
0 −5

)
= BA

. Αυτό συμβαίνει γιατί αν DA =

(
2 0
0 5

)
, DB =

(
3 0
0 −1

)
και X =

(
1 1
0 1

)
, τότε

X−1AX = DA, X−1BX = DB.
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Κανονική μορφή Jordan I

Περιγραφή

Είδαμε ότι δεν είναι όλα τα τετραγωνικά μητρώα διαγωνιοποιήσιμα. Τίθε-
ται το ερώτημα τι γίνεται στην (ομολογουμένως, σπανιότερη) περίπτωση
που για ένα μητρώο A δεν υπάρχει αντιστρέψιμο X τ.ώ. να είναι διαγώνιο
το A−1AX. Πόσο απλό μπορούμε να κάνουμε γενικό μητρώο A με μετα-
σχηματισμό ομοιότητας;

Η κανονική μορφή Jordan είναι η απλούστερη μορφή στην οποία μπορούμε
να αναγάγουμε κάθε τετραγωνικό μητρώο με μετασχηματισμό ομοιότητας,
υπό την προϋπόθεση ότι το κριτήριο της απλότητας είναι το μητρώο να μοιάζει
όσο γίνεται σε διαγώνιο.
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Κανονική μορφή Jordan II
Αν το μητρώο είναι διαγωνιοποιήσιμο, τότε η μορφή Jordan είναι το διαγώνιο
μητρώο των ιδιοτιμών.
Για κάθε A ∈ Cn×n με ιδιοτιμές λ1, . . . , λn, υπάρχει μητρώο X ∈ Cn×n τέτοιο ώστε

X−1AX = J =


J1

J2
. . .

Jq


Σε κάθε ιδιοτιμή αντιστοιχούν όσα υπομητρώα Jordan είναι η γεωμετρική πολλαπλότητά της.
Το άθροισμα των διαστάσεων των υπομητρώων Jordan για μία ιδιοτιμή είναι ίσο με την
αλγεβρική πολλαπλότητά της.
Κάθε Ji αποκαλείται απλό (υπο)μητρώο Jordan και έχει τη μορφή

Ji =


λi 1 0 · · ·

0 λi
. . .

...
...

. . .
. . .

0 · · · 0 λi

 ∈ Cki×ki , όπου
q∑

i=1

ki = n.

Αν η γεωμετρική πολλαπλότητα κάθε ιδιοτιμής ισούται με την αλγεβρική, τότε όλα τα blocks
είναι μεγέθους 1× 1 και το μητρώο είναι διαγώνιο.
Όποτε η γεωμετρική πολλαπλότητα είναι μικρότερη, τότε εμφανίζονται «1» στην
υπεριδιαγώνιο.
Η διαγώνιος περιέχει όλες τις ιδιοτιμές επαναλαμβανόμενες με την αντίστοιχη πολλαπλότητά
τους.
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Παρατηρήσεις

Καλά νέα 1) Η μορφή Jordan αποκαλύπτει τη φασματική δομή του
μητρώου. 2) Αποτελεί μία σημαντική κανονική μορφή μητρώου
(υπάρχουν και άλλες).

Κακά νέα Aν και ενδιαφέρουσα από μαθηματικής άποψης, υπάρχουν
εγγενείς δυσκολίες στον υπολογισμό της μορφής Jordan.

Τι γίνεται στην πράξη Αναζητούμε άλλες κανονικές μορφές.

Σημαντικές κανονικές μορφές

Schur υπάρχει πάντα ορθομοναδιαίο Q τέτοιο ώστε Q∗AQ = R είναι
άνω τριγωνικό.

SVD υπάρχουν πάντα ορθομοναδιαία U,V τέτοια ώστε το U∗AV = Σ
να είναι διαγώνιο (με μη αρνητικά στοιχεία !)

Γραμμική Άλγεβρα - Δ11 Ίχνος και Ορίζουσα 3/XII/2025 76 / 76


	Υπενθύμιση
	Χαρακτηριστικό πολυώνυμο και μία πρώτη γεύση των ιδιοτιμών
	Ομοιότητα μητρώων
	Ιδιότητες ιδιοζευγών πραγματικών συμμετρικών μητρώων και μιγαδικών ερμιτιανών μητρώων
	Μερικοί απλοί τρόποι υπολογισμού
	Συμπληρωματικά θέματα
	Δυνάμεις μητρώων
	Συνοδευτικό μητρώο
	Επίλυση γραμμικού συστήματος μέσω φασματικού αναπτύγματος 
	Ιδιοτιμές γινομένου μητρώων


