ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ ΙΙ
Όπως αναφέρθηκε, οι Γ.Α. πλεονεκτούν αισθητά στη λύση προβλημάτων αναζήτησης και βελτιστοποίησης από τις παραδοσιακές μεθόδους. Αυτό συμβαίνει, διότι διαφέρουν θεμελιωδώς από αυτές. Τα κυριότερα νέα χαρακτηριστικά που τους διαφοροποιούν, αλλά και τους δίνουν υπεροχή , σύμφωνα με τον D. Goldberg [29], είναι τα εξής:
1)
Οι Γ.Α. δουλεύουν με μια κωδικοποίηση ενός συνόλου τιμών που
μπορούν να λάβουν οι μεταβλητές και όχι με τις ίδιες τις μεταβλητές του
προβλήματος: Η κωδικοποίηση, σε αντιστοιχία με την κωδικοποιημένη
πληροφορία των χρωμοσωμάτων σε συμβολοσειρές πεπερασμένου μήκους. Για παράδειγμα,
αναφέρεται το εξής πρόβλημα βελτιστοποίησης: Έστω ένα μαύρο κουτί με πέντε
δυαδικούς διακόπτες (on-off). Για κάθε συνδυασμό των διακοπτών
παράγεται μία έξοδος
. Ζητείται ο συνδυασμός των διακοπτών που μεγιστοποιεί την
έξοδο. Με τις παραδοσιακές μεθόδους, το μέγιστο θα εντοπιζόταν με "παίξιμο" των
διακοπτών πηγαίνοντας από συνδυασμό σε συνδυασμό με ψάξιμο στα τυφλά, καθ’ ότι
δεν είναι γνωστός ο τύπος της συνάρτησης. Σε ένα Γ.Α. όμως, η πρώτη ενέργεια
είναι η κωδικοποίηση των διακοπτών ως συμβολοσειρές πεπερασμένου μήκους. Μια
απλή κωδικοποίηση θα μπορούσε να γίνει θεωρώντας μια δυαδική συμβολοσειρά μήκους
πέντε, όπου η κάθε θέση αναπαριστά ένα διακόπτη. Το 0 αντιστοιχεί στη θέση off
και το 1 στη θέση on. Δηλαδή, η συμβολοσειρά 11110
κωδικοποιεί το συνδυασμό κατά τον οποίο οι πρώτοι τέσσερις διακόπτες είναι on
και ο τελευταίος off. Η κωδικοποίηση δεν είναι απαραίτητο να είναι πάντα δυαδική.
Όπως θα φανεί και αργότερα, μπορεί να γίνει με πολλούς τρόπους, αρκετοί από τους
οποίους ίσως και να μην είναι προφανείς. Το στοιχείο της κωδικοποίησης, όπως
εξηγείται παρακάτω, είναι εκείνο που επιτρέπει στους Γ.Α. να κάνουν παράλληλη
επεξεργασία δεδομένων.
2) Οι Γ.Α. κάνουν αναζήτηση σε πολλά σημεία ταυτόχρονα και όχι μόνο σε ένα: Σε πολλές μεθόδους βελτιστοποίησης, η επεξεργασία γίνεται βήμα προς βήμα, πηγαίνοντας προσεκτικά από σημείο σε σημείο του πεδίου ορισμού του προβλήματος. Αυτό το βήμα προς βήμα ενέχει αρκετούς κινδύνους, ο κυριότερος από τους οποίους είναι να περιοριστεί η αναζήτηση σε μια περιοχή τοπικού ακρότατου, που δεν είναι ολικό. Οι Γ.Α. εξαλείφουν αυτόν τον κίνδυνο ενεργώντας ταυτόχρονα πάνω σε ένα ευρύ σύνολο σημείων (σύνολο από συμβολοσειρές). Έτσι μπορούν να "ανεβαίνουν" πολλούς λόφους (hill-climbing) την ίδια στιγμή, ελαχιστοποιώντας την πιθανότητα να βρουν μια λάθος κορυφή. Γυρίζοντας στο παράδειγμα με το μαύρο κουτί, οι κλασσικές μέθοδοι θα ξεκινούσαν το ψάξιμο από ένα συνδυασμό των διακοπτών και στη συνέχεια, εφαρμόζοντας κάποιο κανόνα μετάβασης, θα δοκίμαζαν τον επόμενο (ψάξιμο δηλαδή σημείο προς σημείο). Αντιθέτως, ένας Γ.Α. αρχίζει το ψάξιμό του από ένα πληθυσμό συνδυασμών συμβολοσειρών και κατόπιν παράγει διαδοχικά καινούριους. Ένας αρχικός πληθυσμός θα μπορούσε να είναι, π.χ. 01101, 11000, 01000 και 10011. Έπειτα, "τρέχοντας" ο αλγόριθμος δημιουργεί νέους πληθυσμούς που σιγά σιγά συγκλίνουν προς την επιθυμητή λύση. Διαλέγοντας ένα πληθυσμό που να καλύπτει αντιπροσωπευτικά ένα μεγάλο εύρος τιμών μπορούν να προκύψουν ικανοποιητικά αποτελέσματα.
3) Οι Γ.Α. χρησιμοποιούν μόνο την αντικειμενική συνάρτηση και καμία επιπρόσθετη πληροφορία: Πολλές μέθοδοι αναζήτησης απαιτούν αρκετές βοηθητικές πληροφορίες για τη συνάρτηση που επεξεργάζονται. Τέτοιου είδους πληροφορίες δεν προαπαιτούνται από τους Γ.Α. Το ψάξιμό τους είναι κατά κάποιο τρόπο "τυφλό". Αξιοποιούν μόνο όση πληροφορία περιέχεται στην αντικειμενική συνάρτηση πράγμα που τους προσδίδει μεγάλη ευελιξία. Έτσι όμως, προκύπτει το ερώτημα αν συμφέρει να αγνοούνται οι βοηθητικές πληροφορίες. Γι' αυτό ακριβώς το λόγο έχουν αναπτυχθεί μορφές Γ.Α. που αξιοποιούν και τέτοιου είδους πληροφορίες (Knowledge-Based Genetic Algorithms).
4) Οι Γ.Α. χρησιμοποιούν πιθανοθεωρητικούς κανόνες μετάβασης και όχι ντετερμινιστικούς: H χρήση πιθανοθεωρητικών κανόνων μετάβασης είναι κυρίαρχο γνώρισμα των Γ.Α., χωρίς αυτό να σημαίνει ότι η όλη διαδικασία βαδίζει στην τύχη. Δε λαμβάνονται αποφάσεις με το "στρίψιμο ενός νομίσματος". Το στοιχείο της τύχης χρησιμοποιείται ως οδηγός για αναζήτηση σε περιοχές που αναμένεται να δώσουν καλά αποτελέσματα.
Τα τέσσερα προαναφερθέντα χαρακτηριστικά συμβάλουν αποφασιστικά ώστε να έχουν οι Γ.Α. την πολυπόθητη ιδιότητα της ευρωστίας.