CS 559: Machine Learning
Fundamentals and Applications
(Midterm Recap)

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/” mordohai

E-mail: Philippos.Mordohai@stevens.edu
Office: Lieb 215




Midterm

* October 21 (first part of the class)
— Open books/notes
— No graphing calculators
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Pairs of Discrete Random Variables

 Let xand ybe two discrete r.v.

e For each possible pair of values, we can
define a joint probability p;=Pr{x=x, y=y]
 We can also define a joint probability mass
function P(x,y) which offers a complete

characterization of the pair of r.v.
P(x) =2, P(x,y)

yeY Marginal distributions

P,(y) =Y P(xy)

XeX
Note that P, and P, are different functions



Conditional Probability

When two r.v. are not independent,
knowing one allows better estimate of the
other (e.g. outside temperature, season)
Prix=X;,y=yj]

Prly =yl

If independent P(x|y)=P(x)

Prix=x; |y =y,]=




Law of Total Probability

 If an event A can occur in m different ways
and if these m different ways are mutually
exclusive, then the probability of A
occurring is the sum of the probabilities of

the sub-events

P(X :Xi):ZP(X = X |Y :yj)P(Y — yj)



Bayes Rule

P(x,y) _ P(y[x)P(x)
P(Y) D P(xY)

XxeX

likelihood * prior

evidence
XIS the unknown cause

y is the observed evidence

Denominator often omitted (maximum a posteriori
solution)

Bayes rule shows how probability of x changes
after we have observed y

P(x]y)=

posterior =




Normal (Gaussian) Distribution

e Central Limit Theorem: under various
conditions, the distribution of the sum of d
Independent random variables approaches
a limiting form known as the normal

distribution T
p(X)_\/ﬂGe - (ILI’G)
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Normal (Gaussian) Distribution
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Bayes Decision Theory

Probability distributions for the categories
are known

Do not need training data
Can design optimal classifier

Very rare in real life



Decision Rules

* Decision rule with only the prior information
— Decide w, if P(04) > P(w,) otherwise decide w,

— Prior comes from prior knowledge, no data have
been seen yet

— If there is a reliable source prior knowledge, it
should be used

e Use of the class-conditional information

* p(x| ®¢) and p(x | ®,) describe the difference
in lightness between populations



Decision using Posteriors

« Decision given the posterior probabilities

X is an observation for which:

if P(o, | X) > P(w, | X) ——> True state of nature = w;
If P(oq | X) < P( X) ——)> True state of nature = w,
Therefore:

whenever we observe a particular x, the probability
of error is :

P(error | x) = P(w4 | X) if we decide o,
P(error | x) = P(w, | x) if we decide o

Pattern Classification, Chapter 2 13
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FIGURE 2.2. Posterior probabilities for the particular priors Plen) = 2/3 and Plaw;)
= 1/3 for the class-conditional probability densities shown in Fig. 2.1. Thus in this
case, given that a pattern is measured to have feature value x = 14, the probability it is
in category a, is roughly 0,08, and that it is in e, is 0.92. At every x, the posteriors sum
lo 1.0, From: Richard O. Duda, Peter E. Harl, and David . Stork, Pattern Classification.
Copyright © 2001 by John Wiley & Sons, Inc.

Pattern Classification, Chapter 2
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Minimizing Risk

e Let {0, o,,..., o D€ the set of c states of
nature (or “categories”)

e Let{a,, ay,.., a,} be the set of possible
actions

* Let Ao, | o) be the loss incurred for taking
action o; when the state of nature is o,



Overall Risk

R Is the expected loss associated with a given
decision rule

Minimizing R <——> Minimizing R(o; | x) fori=1,..., a
(select action a that minimizes risk as a function of x)

j=cC
R(e, |X)=2 Ma,| o, )P(@,] )
fori=1,.,a =
Select the action o, for which R(«; / x)is minimum

R is minimum and R in this case is called the Bayes
risk = best performance that can be achieved



Conditional Risk

» Two-category classification
« ; . decide w;
o, . decide w,

l,]- =Aa; [ w)

loss incurred for deciding w;when the true state of nature is o,

Conditional risk:

R(ay | X) = Aq1P(@; | X) + 14,P(e; | X)
R, | X) = Ap1P(0q | X) + ApP(; | X)



Decision Rule

Our rule is the following:
if R(oy | %) < R(otp | X)
action «,: decide w;,

This results in the equivalent rule:

decide w;,Iif:

(A21- Aq1) P(X | @1) P(@4) > (A5~ App) P(X | 0,) P(®,)
and decide w, otherwise



Likelihood ratio

The preceding rule is equivalent to the following rule:

fP(X ml) Ay,-4, Plw,)

P(x 602) Ay — Ay P(wl)

Then take action «, (decide w,)
Otherwise take action «, (decide o))



The Zero-one Loss Function

e Zero-one loss function:

Oi=j . .
ﬂ(ai,wj)={l %] 1,j=1,...,C

Therefore, the conditional risk is:
j=¢
R(e | X) =) Me | @;)P(@; | X)
j=1

=D Pl@;|x) =1-P(& | x)

j#1

e The risk corresponding to this loss function is the
average probability of error

Pattern Classification, Chapter 2
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Classifiers, Discriminant Functions
and Decision Surfaces

* The multi-category case

— Set of discriminant functions g(x), 1= 1,.., C

— The classifier assigns a feature vector x to
class ; if:

gi(x) > gi(x) Vj #1



Max Discriminant Functions

* Letgix) =-R(o|Xx)
(max. discriminant corresponds to min. risk)

e For the minimum error rate, we take
gi(x) = P(w; | x)

(max. discriminant corresponds to max. posterior)
gi(x) = P(x | o) P(w)

gi(x) =In P(x | ;) + In P(w))

(In: natural logarithm)



Decision Regions

* Feature space divided into c decision regions
if gi(x) > gi(x) Vj =ithen xis in R
(R means assign x to o;)

 The two-category case

— A classifier is a “dichotomizer” that has two
discriminant functions g, and g,

Let g(x) = g4(x) - gx(x)

Decide o4 if g(x) > 0 ; Otherwise decide o,



Discriminant Functions for the Normal
Density

e We saw that the minimum error-rate
classification can be achieved by the
discriminant function

gi(x) = In P(x | o;) + In P(;)

e Case of multivariate normal

0,00 =2 (=)' 3 Hx—) = In27 =~ In[z,[+InP(@)



e Case 27, = ol (1 stands for the identity matrix)

g;(X) = w; x+w,, (linear discriminant function)
where :

M _
W, = z’WiO__ 2
o 20

(W, Is called the threshold for the ith category)

#; 14+ InP(@)



— The hyperplane separating & and £
g; (X) =W, X+ W, and g, (X) =W, X+ W,

Decision boundary : g; (x) = g, (x)

w (x—x,)=0
W= — U,
1 o° P(w.
Xo = (ki + 1) - il P( )(ﬂi—ﬂj)
ﬂi_ﬂjH (a)l)

always orthogonal to the line linking the means

If P(a)i)= P(COJ-) then Xo=%(ﬂi+:uj)



» Case 2. = X (covariances of all classes
are identical but arbitrary!)

— Hyperplane separating R and R

W, =%y
In[P(e,)/ P(w))]
(e — 1) 7 (e — 1)

XO:%(ﬂi+ﬂj)_ (14 — u;)

(the hyperplane separating K; and R;is
generally not orthogonal to the line
between the means)



o Case X, = arbitrary

— The covariance matrices are different for each category

gi(x)=XtWiX+WitX=Wio

where :
Wi =_£2i_1
2
w, =2y,
1 o4 1
Wio =_E:ui2i M _Eln‘zi""ln P(w,)

(Hyperguadrics which are: hyperplanes, pairs of
hyperplanes, hyperspheres, hyperellipsoids,
hyperparaboloids, hyperhyperboloids)

Pattern Classification, Chapter 2 28
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Introduction

« Data availability in a Bayesian framework
— We could design an optimal classifier if we knew:

* p(c) (priors)
* p(x | o;) (class-conditional densities)

Unfortunately, we rarely have this complete
information!

* Design a classifier from a training sample
— No problem with prior estimation

— Samples are often too small for class-conditional
estimation (large dimension of feature space)



Parameter Estimation
* Use a priori information about the problem
* E.g.: Normality of p(x | ®))
P(X | @) 7 N( ;, %)
o Simplify problem

— From estimating unknown distribution function
— To estimating parameters



Parameter Estimation

Parameters in ML estimation are fixed but unknown!

Best parameters are obtained by maximizing the
probability of obtaining the samples observed

Bayesian methods view the parameters as random
variables having some known distribution

In either approach, we use p(w; | X)
for our classification rule



Independence Across Classes

* For each class o; we have a proposed density
p:(X| ®;) with unknown parameters 8. which we
need to estimate

e Since we assumed independence of data across
the classes, estimation is an identical procedure
for all classes

« To simplify notation, we drop sub-indexes and
say that we need to estimate parameters 0 for
density p(x)



MLE

Use the information provided by the training
samples to estimate 6 = (04, 0,, ..., 0,)

—each 0, (i=1, 2, .., c) is associated with each category
Suppose that D contains n samples, X4, X,,..., X,

p(D10) =[] p(x, |6)

p(D| 0) is called the likelihood of 6 w.r.t the set of
samples

ML estimate of 0 is, by definition the value 0 that
maximizes p(D | 0)

“It is the value of 6 that best agrees with the
actually observed training sample”



Optimal estimation

* Let6=(0,, 0, .., 0,)'and let V be the gradient
operator - -t
v, = 0 O 0

100,00, "0,

 We define I(0) as the log-likelihood function
1(6) = In p(D | 6)
 New problem statement: ¢ =argmax1(6)
determine 0 that maximizes the log-likelihood



Necessary Condition for an Optimum

kK=n
V,l :Zve In p(x, [6)
k=1

Vol =0



 Example of ML estimation: unknown u and o
(univariate)

0= (0, 0,) = (n, 0?)

1 1
| =1In p(x, |0) =—5In 27z92—ﬁ(xk —0,)?
0
(In p(x, [0))
00,
V=], =0
In p(x, |8
86’2( p(x,16))
(1
Z(xk—¢91):0

3

2
1 4 (Xk o fl) -0
20, 20

Pattern Classification, Chapter 3



Bayesian Estimation

Recall that for the MAP classifier we find the
class w; that maximizes the posterior p(w|D)

By analogy, a reasonable estimate of 0 is the
one that maximizes the posterior p(06|D)

But © is not our final goal, our final goal is the
unknown p(X)

Therefore a better thing to do is to maximize
p(x|D), this is as close as we can come to the
unknown p(x) !

Pattern Classification, Chapter 2 38



Estimation of p(x|D)

 From the definition of joint distribution:
p(x | D)= | p(x,6|D)de
* Using the definition of conditional
probabillity:
p(x | D)= [ p(x|6,D)p(6 | D)de
e But p(x|0,D)=p(x|0) since p(x|O) is
completely specified by 6

known unknown
p(x | D)= [ p(x[@)p(6 | D)o



Estimation of p(x|D)

* Using Bayes formula:

//_\
p(6| D)= IPP((; | ;;Lp(gzm p(D16)=]] p(x,16)
M k=1
e p(x|D) can be computed
ﬁ p(x, [6)p(6)
p(x /D)= [ p(x |6)—= ~do

IH (x, /0)p(6)d



Bayesian Parameter Estimation:
Gaussian Case

Goal: Estimate 0 using the a-posteriori density
P(6 | D)

— The univariate case: p(u | D)
u is the only unknown parameter

2
X ~N(u, o
p( | ’u) (’u’ ) Exact form of distribution is not important.

p(y) ~ N(/uo , (75) Having a known form is important

Lo and G, are known
Lo IS best guess for p, o, is uncertainty of guess



Bayesian Parameter Estimation:
Gaussian Case

no;, | - o’
zun — /un + /uO

no; +o’ no; +o°
2 __2
or e
and o; =—2——
No, +o

e L is linear combination of empirical and prior
Information

e o decreases as more data becomes available
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Mixture Density Model

 Model data with mixture density

c:omponeni;'k densities

m [ \
P(X|9)=ZP(X | C;sgf)P(Cf)
=

mixing parameters

— where 6={0,,.., 6.}
— P(cq)*+P(c,)..+P(c,,)=1
* To generate a sample from distribution p(x|0):

— first select class | with probability P(c;)
— then generate x according to probability law p(x|c;, 6,)

o
Q
p(x|c,,0,) p(X|C;3,65)

p(XiC,,6,)




Mixture Density

Before EM, let’s look at the mixture density again
p(x16,p) = zp(x|c,.,e )p,
Suppose we know how to estimate 0,,.., 0, and py,.., P,
Estimating the class of x is easy with MAP, maximize:
p(x|c;,6,)P(c;)=p(x|c;,6,)p,
Suppose we know the class of samples x;,..., X,

— This is just the supervised learning case, so estimating 0,,.., 8
and pq,..., Py, IS €asy

,=argmaxlinp(D,10)]  p='"
This is an example of chlcken and-egg problem

— The EM algorithm approaches this problem by adding “hidden”
variables



EM: Hidden Variables for Mixture Density

e Foriin[1,n], kin[1, m], define hidden
variables z®

J _[1 1 sample fwas generated by component k
7|0 otherwise

x, > 1x,,27,...,z2™}

 z¥ are indicator random variables, they
indicate which Gaussian component
generated sample X



EM: Hidden Variables for Mixture Density

e Letz ={zM,.., z(™}, be indicator r.v.
corresponding to sample x.

» Conditioned on z, the distribution of x; is
Gaussian

p(xf |zf:9)”N(ﬂk,0'2)
« where kiss.t.z K =1



The EM Algorithm

— start with initial parameters 6()

— iterate the following 2 steps until convergence

E. compute the expectation of the log likelihood with
respect to current estimate 8¢ and X
— Let’s call it Q(0 | 6)

Qlo16")=E,lInp(X,Z106)| X,6"]
M. maximize Q(6 | 8W)

9" = argmax Qo | 6")
e



The EM Algorithm

* For the general case of multivariate Gaussians with
unknown means and variances

« E Step Ez[zf{k]]z fk p(xlﬂk:‘rk)

;p;’p(x /ﬂ;szj)
p(x |12y )= (2;:)”’:2"\”2 exp[—%(x—,uk )fz;;i(x“uk)}
k
« M step
1 n k)
Pr = _ZEZ[ZE ] n

s ZEZ[Z,{“](X,. — Hy )(Xi_auk )

Ek — =1

3 E,[29]x,
My = =

> E, (2]
= i=1

> E,[z]

i=1
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Introduction

« All parametric densities are unimodal (have a single local
maximum), whereas many practical problems involve
multi-modal densities

« Non-parametric procedures can be used with arbitrary
distributions and without the assumption that the forms of
the underlying densities are known

* There are two types of nhon-parametric methods:
— Estimate P(x | o;)

— Bypass density function and go directly to posterior probability
estimation



Density Estimation

— Probability that a vector x will fall in region R is:

P = j p(x')dx (1)

— P is a smoothed (or averaged) version of the density
function p(x) if we have a sample of size n; therefore,
the probability that k points fall in R is then:

P, =[E] PCA-P)™  (2)

and the expected value for kis:
E(k) =nP (3)



ML Estimate

ML estimation of P =6
ng( P.|8) is reached for é:%; P

Therefore, the ratio A&/n is a good estimate for the
probability £ and hence for the density function

p(x) (forlarge n)



Assumptions

p(x)is continuous and the region R is so small that p does
not vary significantly within it, we can write:

[ p(x )dx = p(x )V (4)

where X is a point within R and V the volume enclosed by

R

k
Combining equation (1) , (3) and (4) yields: p(X)= \in



 The volume V needs to approach 0, if we want to use this
estimate

* Practically, V cannot be allowed to become small since the number of
samples is always limited

* One will have to accept a certain amount of variance in the ratio k/n

» Theoretically, if an unlimited number of samples is available, we can
circumvent this difficulty

To estimate the density of x, we form a sequence of regions

R , R , . ..containing x: the first region contains one sample, the
17 ™2
second two samples and so on.

Let V/, be the volume of R,,, k,the number of samples falling in /Qn and
P.(x)be the nt" estimate for p(x):

Pa(X) = (ky/M)V, (V)



Three necessary conditions should apply if we want p,(x)to converge to p(x):

1)limV_ =0
2)limk, =0
3)limk,/n=0

There are two different ways of obtaining sequences of regions that satisfy these
conditions:

(a) Shrink an initial region where V, = 7/vnand show that
X)—> p(x)
P (
N—00
This is called “the Parzen-window estimation method”

(b) Specify k,as some function of n, such as k, = v/7, the volume V., is grown until
it encloses k;, neighbors of x. This is called “the k -nearest neighbor estimation
method”

Pattern Classification, Chapter 4 56



Parzen Windows

— The Parzen-window approach to estimate
densities assumes that the region R is a d-
dimensional hypercube

V_=h? (h :lengthof the edge of R, )
Let @(u) be the following window function :

1.
co(u)=<1 ‘“J\Sg j=1,..,d

0 otherwise

— o((x-x;)/h,) is equal to unity if x;falls within the
hypercube of volume I/, centered at x and equal
to zero otherwise



— The number of samples in this hypercube is:

By substituting 4, in equation (7), we obtain the following

estimate: |
120 1 X — X,
X)=—) — |

=1 Vn N

P_(x) estimates p(x) as an average of functions of xand
the samples {xi} (i=1,... ,n). These functions ¢ can be general



Window Functions

» Conditions for estimating legitimate
density function

— Non-negative ¢(X) =0
— Integrate to 1

[ p(x)dx =1

e |In other words, the window function should
be a probability density function



Classification

e |n classifiers based on Parzen-window
estimation:

— We estimate the densities for each category
and classify a test point by the label
corresponding to the maximum posterior

— The decision region for a Parzen-window
classifier depends upon the choice of window
function as illustrated in the following figure



|P_:|I 1 1 ' 1 1 |r__tll

FIGURE 4.8. The decision boundaries in a two-dimensional Parzen-window di-
chotomizer depend on the window width h. At the left a small h leads to boundaries
that are more complicated than for large h on same data set, shown at the right. Appar-
ently, for these data a small h would be appropriate for the upper region, while a large
h would be appropriate for the lower region; no single window width is ideal over-
all. From: Richard O, Duda, Peter E. Harl, and David . Stork, Faltern Classification.
Copyright @ 2001 by John Wiley & Sons, Inc.

Remember discussion on overfitting

Pattern Classification, Chapter 4 61



K - Nearest Neighbor Estimation

e (Goal: a solution for the problem of the unknown “best” window
function

— Let the cell volume be a function of the training data
— Center a cell about x and let it grow until it captures &k, samples
(k, = 1(n))

— k, are called the &, nearest-neighbors of x

 Benefits

— If density is high near x, the cell will be small which provides a
good resolution

— If density is low, the cell will grow large and stop when higher
density regions are reached

We can obtain a family of estimates by setting & =k,/vnand
choosing different values for 4,



Estimation of Posterior Probabilities

» Goal: estimate P(w; [/ x) from a set of n labeled samples
* Place a cell of volume V around x and capture k samples
» k;samples amongst k turned out to be labeled o, then:
pox, ®) = k;/nV
An estimate for p (w,/ x)is:

X,m, K.
p, (@, ] x)=—Pod -

2. P (X,

j=1




—ki/k is the fraction of the samples within the
cell that are labeled w;

— For minimum error rate, the most frequently
represented category within the cell is
selected

=> This is equivalent to posterior estimation

—If k is large and the cell sufficiently small, the
performance will approach the best possible



The Nearest-Neighbor Rule

Let D, ={x,, x,, .., X} be a set of n labeled prototypes

Let x’ € D, be the closest prototype to a test point x then the
nearest-neighbor rule for classifying xis to assign it the label
associated with x’

The nearest-neighbor rule leads to an error rate greater than the
minimum possible: the Bayes rate

If the number of prototype is large (unlimited), the error rate of the
nearest-neighbor classifier is never worse than twice the Bayes rate
(it can be proven!)

If n — oo, it is always possible to find x’sufficiently close so that:
Plw; [ x) ~ Plo; [ x)
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Definition

Doubly stochastic process with an underlying stochastic
process that is not observable (hidden), but can only be
observed through another set of stochastic processes that
produce the sequence of observed symbols.

67



FIGURE 3.8. The discrete states, w;, in a basic Markov model are represented by nodes,
and the transition probabilities, a;, are represented by links. In a first-order discrete-time

Markov model, at any step f the full system is in a particular state w(f). The state at step
{4+ 1 is a random function that depends solely on the state at step t and the transi-

lion probabilities. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Fattern
Classification. Copyright © 2001 by John Wiley & Sons, Inc.

Pattern Classification, Chapter 3 68



The Evaluation Problem

The probability that the model produces a
sequence VT of visible states is:

P(V') = ZP(V | @, )P (@, )
where each r mdexes a particular sequence
o = {a)(l),a)(Z) _____ a)(T)} of T hidden states.

M PV I])=[[PO®)] )

2 P@)=[]Pla®)]|at-1)



Using equations (1) and (2), we can write:

Max =T
T
PVT) =D [ [ P(v(t)] &(1)) P(a(t) | (t-1))

r=1 t=1
Interpretation The probability that we observe the particular
sequence of T visible states VT is equal to the sum over all .,
possible sequences of hidden states of the conditional probgbility
that the system has made a particular transition multiplied by the
probability that it then emitted the visible symbol in our target

sequence.

Example Let w,, @, @;be the hidden states; v,, v,, v;be the visible
states
and V3={v,, v,, v3} is the sequence of visible states

P({Vv4, v, V3}) = P(@1)P(vy | 04)P(@; | @1)P(V, | 02)P(w3 | @g)P(v; | )
+..+ (possible terms in the sum= all possible (33= 27) cases !)
In general r,..=c', where c is the number of states



First possibility: m @

Second Possibility:

W, 3
(t=1) (t=2) (t=3)

P({V1, V2, V3}) = P(02)P(vy | 0,)P(@3 | 00)P(vy | 03)P(@q | 03)P(v;3 | ©q) + ..t

Therefore:

P(V1,V,,V3}) = > ii[ P(v(t) | o(t))P(a() | ot -1))

possible sequence t=1
of hidden states



Algorithm

1. Initialize: €0, a;, by, visible sequence V7,
a(0)

2. fort&t+1

3. a(t)<bv(t)z a(t-1) a;

4. until t=T

5. return P(VT)<ay(T)

aj(t): probability of being in state w; at ste;r) t,
having generated first t elements of V

ay(T) Is probability of sequence ending at
known final state



Note: Typo in
caption of Fig.
3.10 in DHS.
See errata.

OO
OO0

FIGURE 2.10. The computation of probabilities by the Forward algorithm can be visu-
alized by means of a trellis—a sort of “unfolding” of the HMM through time. Suppose
we spok the prohahility that the HMM was in state so at # = 1 and penerated the ohe-
served visible symbol up through that step (including the observed visible symbaol w).
The probability the HMM was in state wi(t = 2) and generated the observed sequence
through t = 2 isay(2) for j=1,2..... c. To find o (3) we must sum these and multiply
the probability that state «;, emitted the observed symbol vi. Formally, for this particular
illustration we have o;(3) = by 37 | oji2)agbrom: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. EWW lohn Wiley & Sons,

Ine.

[= ] 2 3

Pattern Classification, Chapter 3 V(3)
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Goal of PCA

Compute the most meaningful basis to re-
express a noisy data set

Hope that this new basis will filter out the noise
and reveal hidden structure

In toy example:

— Determine that the dynamics are along a single axis
— Determine the important axis



Change of Basis

« Xis original data (mxn, m=6, n=7200)
e LetY be another mxn matrix such that Y=PX

P is a matrix that transforms X into Y
— Geometrically it is a rotation and stretch

— The rows of P {py,.., p,} are the new basis vectors for the
columns of X

— Each element of y, is a dot product of x; with the corresponding
row of P (a projection of x; onto p,)
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How to find an
Appropriate Change of Basis?

The row vectors {p1,.., p,t Will become the principal
components of X

What is the best way to re-express X?
What features would we like Y to exhibit?

If we call X “garbled data”, garbling in a linear system
can refer to three things:

— Noise

— Rotation

— Redundancy



Ball travels in straight line

— Any deviation

Variance due to signal and A

must be noise

noise are indicated in diagram

SNR: ratio of t

— “Fatness” of ¢

ne two lengths
ata corresponds to noise

Assumption: C
measurement
of interest

irections of largest variance in
vector space contain dynamics
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Redundancy

* |s it necessary to record 2 variables for the ball-spring
system?

e Is it necessary to use 3 cameras?

Redundancy spectrum for 2 variables

low redundancy high redundancy
J. Shlens




Sketch of Algorithm

* Pick vector in 1D space along which variance is
maximal and save as p,

* Pick another direction along which variance is
maximized among directions perpendicular to p;

 Repeat until A principal components have been
selected



Basic PCA Algorithm

Start from mxn data matrix X

— mdata points (samples over time)

— nmeasurement types

Re-center: subtract mean from each row of X

Compute covariance matrix:

Z_X T X Note: Covariance matrix is nxn (measurement types)
&7 I (But there may be exceptions)

Compute eigenvectors and eigenvalues of 2

Principal components: k eigenvectors with
highest eigenvalues



SVD

 Efficiently finds top k eigenvectors
— Much faster than eigen-decomposition
e Write X=US VT
— X: data matrix, one row per datapoint

— U: weight matrix, one row per datapoint -
coordinates of x' in eigen-space

— S: singular value matrix, diagonal matrix
* inour setting each entry is eigenvalue A, of 2

— VT: singular vector matrix
* in our setting each row is eigenvector v, of 2



