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CS 559: Machine LearningCS 559: Machine Learning 
Fundamentals and Applications

(Midterm Recap)

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E mail: Philippos Mordohai@stevens eduE-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215



MidtermMidterm

• October 21 (first part of the class)October 21 (first part of the class)
– Open books/notes

No graphing calculators– No graphing calculators

Pattern Classification, Chapter 2 2



OutlineOutline
• Probability theory

• Bayes decision theory

• Maximum-likelihood and Bayesian y
parameter estimation

• Expectation maximizationExpectation maximization

• Non-parametric techniques

Hidd M k d l• Hidden Markov models 

• Principal component analysis
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Pairs of Discrete Random VariablesPairs of Discrete Random Variables

• Let x and y be two discrete r.v. 

• For each possible pair of values, we can 
define a joint probability pij=Pr[x=xi, y=yj]j p y pij [ i, y yj]

• We can also define a joint probability mass 
function P(x y) which offers a completefunction P(x,y) which offers a complete 
characterization of the pair of r.v.
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Conditional ProbabilityConditional Probability

• When two r v are not independentWhen two r.v. are not independent, 
knowing one allows better estimate of the 
other (e g outside temperature season)other (e.g. outside temperature, season)
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Law of Total ProbabilityLaw of Total Probability

• If an event A can occur in m different waysIf an event A can occur in m different ways 
and if these m different ways are mutually 
exclusive then the probability of Aexclusive, then the probability of A 
occurring is the sum of the probabilities of 
the sub-eventsthe sub events
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Bayes RuleBayes Rule
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• x is the unknown cause
evidence

posterior 

• y is the observed evidence
• Denominator often omitted (maximum a posteriori 

l i )solution)
• Bayes rule shows how probability of x changes 

after we have observed yafter we have observed y
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Normal (Gaussian) DistributionNormal (Gaussian) Distribution

• Central Limit Theorem: under variousCentral Limit Theorem: under various 
conditions, the distribution of the sum of d
independent random variables approachesindependent random variables approaches 
a limiting form known as the normal 
distribution 1 )( 2xdistribution

),(
2
1)( 22

)(
2 





Nexp
x




8



Normal (Gaussian) DistributionNormal (Gaussian) Distribution
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OutlineOutline
• Probability theory

• Bayes decision theory
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• Non-parametric techniques
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• Principal component analysis
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Bayes Decision TheoryBayes Decision Theory

• Probability distributions for the categoriesProbability distributions for the categories 
are known

• Do not need training data• Do not need training data

• Can design optimal classifier

• Very rare in real lifey
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Decision RulesDecision Rules

• Decision rule with only the prior informationy p
– Decide 1 if P(1) > P(2) otherwise decide 2
– Prior comes from prior knowledge, no data have 

been seen yetbeen seen yet
– If there is a reliable source prior knowledge, it 

should be used

• Use of the class–conditional information

• p(x | 1) and p(x | 2) describe the difference 
in lightness between populations
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Decision using PosteriorsDecision using Posteriors

• Decision given the posterior probabilities

X is an observation for which:

if P(1 | x) > P(2 | x)           True state of nature = 1
if P(1 | x) < P(2 | x)           True state of nature = 2

Therefore:
whenever we observe a particular x, the probability 

of error is :of error is :
P(error | x) = P(1 | x) if we decide 2

P(error | x) = P(2 | x) if we decide 1
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Minimizing RiskMinimizing Risk

• Let {   } be the set of c states ofLet {1, 2,…, c} be the set of c states of 
nature (or “categories”)

• Let {1, 2,…, a} be the set of possible 
actionsactions

L ( | ) b h l i d f ki• Let (i | j) be the loss incurred for taking 
action i when the state of nature is j
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Overall Risk
R is the expected loss associated with a given 
decision rule

Minimizing R           Minimizing R(i | x) for i = 1,…, a
( l t ti th t i i i i k f ti f )(select action  that minimizes risk as a function of x)
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for i = 1,…,a
Select the action i for which R(i | x) is minimum
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R is minimum and R in this case is called the Bayes 
risk = best performance that can be achievedrisk = best performance that can be achieved
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Conditional RiskConditional Risk

• Two-category classificationTwo category classification
1 : decide 1

2 : decide 22

ij = (i | j)

loss incurred for deciding i when the true state of nature is jg i j

Conditional risk:

R(1 | x) = 11P(1 | x) + 12P(2 | x)
R(2 | x) = 21P(1 | x) + 22P(2 | x) ( 2 | ) 21 ( 1 | ) 22 ( 2 | )
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Decision RuleDecision Rule

Our rule is the following:Our rule is the following:

if R(1 | x) < R(2 | x)              

action 1: decide 1action 1: decide 1

This results in the equivalent rule:This results in the equivalent rule:

decide 1 if:

(  ) P(x | ) P( ) > (  ) P(x | ) P( )(21- 11) P(x | 1) P(1) > (12- 22) P(x | 2) P(2)
and decide2 otherwise
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Likelihood ratioLikelihood ratio

The preceding rule is equivalent to the following rule:
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Then take action 1 (decide 1)

Otherwise take action 2 (decide 2)2 ( 2)
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The Zero-one Loss FunctionThe Zero one Loss Function
• Zero-one loss function:

c,...,1j,i      
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Classifiers, Discriminant Functions
d D i i S fand Decision Surfaces

• The multi-category caseThe multi category case

Set of discriminant functions g (x) i = 1 c– Set of discriminant functions gi(x), i = 1,…, c

– The classifier assigns a feature vector x toThe classifier assigns a feature vector x to 
class i if: 

gi(x) > gj(x) j  igi(x)  gj(x) j  i
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Max Discriminant FunctionsMax Discriminant Functions

• Let gi(x) = - R(i | x)gi( ) ( i | )
(max. discriminant corresponds to min. risk)

• For the minimum error rate we take• For the minimum error rate, we take 
gi(x) = P(i | x)

( di i i t d t t i )(max. discriminant corresponds to max. posterior)
gi(x)  P(x | i) P(i)

gi(x) = ln P(x | i) + ln P(i)

(ln: natural logarithm)( g )
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Decision RegionsDecision Regions

• Feature space divided into c decision regionsp g
if gi(x) > gj(x) j  i then x is in Ri

(Ri means assign x to i)(Ri means assign x to i)

• The two-category case
– A classifier is a “dichotomizer” that has two 

discriminant functions g1 and g2

L t ( ) ( ) ( )Let g(x)  g1(x) – g2(x)

Decide 1 if g(x) > 0 ; Otherwise decide 2Decide 1 if g(x)  0 ; Otherwise decide 2
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Discriminant Functions for the Normal 
D iDensity

• We saw that the minimum error-rateWe saw that the minimum error rate 
classification can be achieved by the 
discriminant functiondiscriminant function

g (x) = ln P(x |  ) + ln P( )gi(x) = ln P(x | i) + ln P(i)

C f l i i l• Case of multivariate normal
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• Case i = 2I (I stands for the identity matrix)Case i   I (I stands for the identity matrix)
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– The hyperplane separating Ri and Rj
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• Case i =  (covariances of all classes 
are identical but arbitrary!)are identical but arbitrary!)

Hyperplane separating R and R– Hyperplane separating Ri and Rj
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• Case i = arbitrary

– The covariance matrices are different for each category
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OutlineOutline
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• Bayes decision theory

• Maximum-likelihood and Bayesian y
parameter estimation

• Expectation maximizationExpectation maximization

• Non-parametric techniques

Hidd M k d l• Hidden Markov models 

• Principal component analysis
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IntroductionIntroduction

• Data availability in a Bayesian frameworky y
– We could design an optimal classifier if we knew:

• p(i) (priors)
• p(x |  ) (class-conditional densities)• p(x | i) (class-conditional densities)

Unfortunately, we rarely have this complete 
information!

• Design a classifier from a training sampleg g p
– No problem with prior estimation
– Samples are often too small for class-conditional 

estimation (large dimension of feature space)estimation (large dimension of feature space)
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Parameter EstimationParameter Estimation

• Use a priori information about the problemUse a priori information about the problem

• E.g.: Normality of p(x | i)E.g.: Normality of p(x | i)

p(x | i) ~ N( i, i)p( | i) ( i i)

• Simplify problemSimplify problem
– From estimating unknown distribution function
– To estimating parameters g p
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Parameter EstimationParameter Estimation

• Parameters in ML estimation are fixed but unknown!

• Best parameters are obtained by maximizing the 
probability of obtaining the samples observed

• Bayesian methods view the parameters as random 
variables having some known distributiong

• In either approach, we use p(i | x)
for our classification rulefor our classification rule
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Independence Across ClassesIndependence Across Classes

• For each class i we have a proposed densityFor each class i we have a proposed density 
pi(x| i) with unknown parameters θi which we 
need to estimate

• Since we assumed independence of data across 
the classes, estimation is an identical procedure 
for all classes

• To simplify notation, we drop sub-indexes and 
θ fsay that we need to estimate parameters θ for 

density p(x)
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MLEMLE

• Use the information provided by the training p y g
samples to estimate  = (1, 2, …, c) 
– each i (i = 1, 2, …, c) is associated with each category

• Suppose that D contains n samples x1 x2 xSuppose that D contains n samples, x1, x2,…, xn
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• p(D| ) is called the likelihood of  w.r.t the set of 
samples
ML ti t f  i b d fi iti th l th t̂• ML estimate of  is, by definition the value     that  
maximizes p(D | )
“It is the value of  that best agrees with the 



g
actually observed training sample”
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Optimal estimationOptimal estimation
• Let  = (1, 2, …, p)t and let  be the gradient 

operator t


p t

p21
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• We define l() as the log-likelihood functionWe define l() as the log likelihood function
l() = ln p(D | )

)(ˆ  l• New problem statement:
determine  that maximizes the log-likelihood

)(maxarg  l
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Necessary Condition for an OptimumNecessary Condition for an Optimum
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• Example of ML estimation: unknown  and 
( i i t )(univariate)

 = (1, 2) = (, 2)
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Bayesian EstimationBayesian Estimation

• Recall that for the MAP classifier we find theRecall that for the MAP classifier we find the 
class ωi that maximizes the posterior p(ω|D)

• By analogy a reasonable estimate of θ is the• By analogy, a reasonable estimate of θ is the 
one that maximizes the posterior p(θ|D)

• But θ is not our final goal our final goal is the• But θ is not our final goal, our final goal is the 
unknown p(x)

• Therefore a better thing to do is to maximize• Therefore a better thing to do is to maximize 
p(x|D), this is as close as we can come to the 
unknown p(x) !unknown p(x) !
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Estimation of p(x|D)Estimation of p(x|D)
• From the definition of joint distribution:

• Using the definition of conditional g
probability:

• But p(x|θ,D)=p(x|θ) since p(x|θ) is 
completely specified by θcompletely specified by θ
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Estimation of p(x|D)Estimation of p(x|D)

• Using Bayes formula:g y

• p(x|D) can be computed
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Bayesian Parameter Estimation: 
G i CGaussian Case

Goal: Estimate  using the a-posteriori density 
P( | D)

– The univariate case: p( | D)
 is the only unknown parameter

Exact form of distribution is not important.
Having a known form is important),N( ~ )p(

),N( ~ ) |p(x 
2
00

2




0 and 0 are known
0 is best guess for , 0 is uncertainty of guess

),()p( 00
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Bayesian Parameter Estimation: 
G i C
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• µ is linear combination of empirical and prior 
information

decreases as more data becomes available•  decreases as more data becomes available
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Mixture Density Modely
• Model data with mixture density

– where θ={θ θ }– where θ={θ1,…, θm}

– P(c1)+P(c2)…+P(cm)=1

• To generate a sample from distribution p(x|θ):To generate a sample from distribution p(x|θ):
– first select class j with probability P(cj)  

– then generate x according to probability law p(x|cj, θj)g g p y p( | j j)
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Mixture Density
• Before EM, let’s look at the mixture density again

• Suppose we know how to estimate θ1,…, θm and ρ1,…, ρm

• Estimating the class of x is easy with MAP, maximize:

• Suppose we know the class of samples x1,…, xn

– This is just the supervised learning case, so estimating θ1,…, θm

and ρ1,…, ρm is easy

• This is an example of chicken-and-egg problem
– The EM algorithm approaches this problem by adding “hidden” g pp p y g

variables
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EM: Hidden Variables for Mixture Density

• For i in [1, n], k in [1, m], define hidden 
variables zi

(k)variables zi

• zi
(k)  are indicator random variables, they 

indicate which Gaussian componentindicate which Gaussian component 
generated sample xi
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EM: Hidden Variables for Mixture Density

• Let zi = {zi
(1) zi

(m)} be indicator r vLet zi = {zi
( ),…, zi

( )}, be indicator r.v. 
corresponding to sample xi

• Conditioned on z the distribution of x is• Conditioned on zi, the distribution of xi is 
Gaussian

• where k is s.t. zi
(k) = 1
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The EM AlgorithmThe EM Algorithm
– start with initial parameters θ(0)

– iterate the following 2 steps until convergence
E. compute the expectation of the log likelihood with 

respect to current estimate θ(t) and Xrespect to current estimate θ(t) and X
– Let’s call it Q(θ | θ(t))

M. maximize Q(θ | θ(t))

48



The EM Algorithm
• For the general case of multivariate Gaussians with 

unknown means and variances

• E step

• M step• M step
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IntroductionIntroduction

• All parametric densities are unimodal (have a single local p ( g
maximum), whereas many practical problems involve 
multi-modal densities

• Non-parametric procedures can be used with arbitrary 
distributions and without the assumption that the forms of 
the underlying densities are knownthe underlying densities are known

• There are two types of non-parametric methods:
E ti t P( | )– Estimate P(x | j ) 

– Bypass density function and go directly to posterior probability 
estimation
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Density Estimation

– Probability that a vector x will fall in region R is:




 (1)               ')'( dxxpP

– P is a smoothed (or averaged) version of the density 
function p(x) if we have a sample of size n; therefore, 
the probability that k points fall in R is then:the probability that k points fall in R is then:
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k PP
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and the expected value for k is:

E(k) = nP (3)



E(k) = nP (3)
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ML EstimateML Estimate

ML estimation of  P = 
is reached for P

k
̂)|P(Max  is reached for

Therefore the ratio k/n is a good estimate for the

P
n
)|P(Max k 



Therefore, the ratio k/n is a good estimate for the 
probability P and hence for the density function 
p(x) (for large n)p(x) (for large n) 
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AssumptionsAssumptions

p(x) is continuous and the region R is so small that p doesp(x) is continuous and the region R is so small that p does 
not vary significantly within it, we can write:

(4)V)('d)'(
where x is a point within R and V the volume enclosed by 

(4)                   V)x(p'dx)'x(p




p y

R.

/k
Combining equation (1) , (3) and (4) yields:

V
n/k)x(p 
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• The volume V needs to approach 0, if we want to use this 
estimateestimate

• Practically, V cannot be allowed to become small since the number of 
samples is always limitedsamples is always limited

• One will have to accept a certain amount of variance in the ratio k/n

• Theoretically, if an unlimited number of samples is available, we can 
circumvent this difficulty

To estimate the density of x, we form a sequence of regions

R1, R2,…containing x: the first region contains one sample, the 
second two samples and so on.

Let V be the volume of R k the number of samples falling in R andLet Vn be the volume of Rn, kn the number of samples falling in Rn and 
pn(x) be the nth estimate for p(x):

p (x) = (k /n)/V (7)pn(x)  (kn/n)/Vn (7)
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Three necessary conditions should apply if we want pn(x) to converge to p(x):

klim )2

0Vlim)1

nn

nn









There are two different ways of obtaining sequences of regions that satisfy these 
conditions:

0n/klim )3 nn




conditions:

(a) Shrink an initial region where Vn = 1/n and show that 

This is called “the Parzen-window estimation method”

)x(p)x(p
nn 


(b) Specify kn as some function of n,  such as kn = n; the volume Vn is grown until 
it encloses kn neighbors of x. This is called “the kn-nearest neighbor estimation 
method”method”
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Parzen WindowsParzen Windows
– The Parzen-window approach to estimate 

densities assumes that the region R is a d-densities assumes that the region Rn is a d
dimensional hypercube

 ) ofedge the  of length :(h hV nn
d
nn


  d1j1u1

:functionwindow following the be  (u) Let









otherwise0   

d , 1,...j  
2

u   1
(u) j

– ((x-xi)/hn) is equal to unity if xi falls within the 
hypercube of volume Vn centered at x and equal 
to zero otherwiseto zero otherwise
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– The number of samples in this hypercube is:












 


ni

i

i
n h

xxk
1



By substituting kn in equation (7), we obtain the following 
estimate:

 i nh1

estimate:








  


i
ni

1i
n h

xx 
V
1

n
1)x(p

Pn(x) estimates p(x) as an average of functions of x and 
th l { } (i 1 ) Th f ti b l

 n1i n hVn

the samples {xi} (i = 1,… ,n). These functions  can be general
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Window FunctionsWindow Functions

• Conditions for estimating legitimateConditions for estimating legitimate 
density function

Non negative 0(x) – Non-negative

– Integrate to 1

 1)( d

0(x) 

 1)( dxx

• In other words, the window function should 
be a probability density function 
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ClassificationClassification

• In classifiers based on Parzen-windowIn classifiers based on Parzen window 
estimation:

– We estimate the densities for each category 
and classify a test point by the label 

di t th i t icorresponding to the maximum posterior

– The decision region for a Parzen-windowThe decision region for a Parzen-window 
classifier depends upon the choice of window 
function as illustrated in the following figure
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K - Nearest Neighbor EstimationK Nearest Neighbor Estimation

• Goal: a solution for the problem of the unknown “best” window 
f tifunction
– Let the cell volume be a function of the training data
– Center a cell about x and let it grow until it captures kn samples 

(k = f(n))(kn  f(n))
– kn are called the kn nearest-neighbors of x

• Benefits• Benefits
– If density is high near x, the cell will be small which provides a 

good resolution
– If density is low, the cell will grow large and stop when higher y , g g p g

density regions are reached

We can obtain a family of estimates by setting kn=k1/n and 
choosing different values for k1choosing different values for k1
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Estimation of Posterior ProbabilitiesEstimation of Posterior Probabilities

• Goal: estimate P(i | x) from a set of n labeled samples( i | ) p

• Place a cell of volume V around x and capture k samples

• ki samples amongst k turned out to be labeled i then: 

pn(x, i) = ki /nV
An estimate for pn(i| x) is:

k),x(p)x|(p i
j

in
in 


k),x(p

)|(p cj

1j
jn

in







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k /k is the fraction of the samples within the– ki/k is the fraction of the samples within the 
cell that are labeled i

– For minimum error rate, the most frequently 
represented category within the cell is 
selectedselected 

=> This is equivalent to posterior estimation

– If k is large and the cell sufficiently small, the 
performance will approach the best possible 
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The Nearest–Neighbor RuleThe Nearest Neighbor Rule

• Let Dn = {x1, x2, …, xn} be a set of n labeled prototypes

• Let x’  Dn be the closest prototype to a test point x then the 
nearest-neighbor rule for classifying x is to assign it the label 
associated with x’associated with x

• The nearest-neighbor rule leads to an error rate greater than the 
minimum possible: the Bayes ratep y

• If the number of prototype is large (unlimited), the error rate of the 
nearest-neighbor classifier is never worse than twice the Bayes rate 
(i b !)(it can be proven!)

• If n  , it is always possible to find x’ sufficiently close so that:
P( | ’) ~ P( | )P(i | x’)  P(i | x) 
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OutlineOutline
• Probability theory

• Bayes decision theory

• Maximum-likelihood and Bayesian y
parameter estimation

• Expectation maximizationExpectation maximization

• Non-parametric techniques

Hidd M k d l• Hidden Markov models 

• Principal component analysis
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DefinitionDefinition

D bl t h ti ith d l i t h tiDoubly stochastic process with an underlying stochastic
process that is not observable (hidden), but can only be 
observed through another set of stochastic processes that 

d th f b d b lproduce the sequence of observed symbols.
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The Evaluation ProblemThe Evaluation Problem
The probability that the model produces a 
sequence VT of visible states is:sequence V of visible states is:

)()|()(
max

T
r

TTT PVPVP 
where each r indexes a particular sequence

of T hidden states

)()|()(
1

r
r

r PVPVP 




 )()2()1( TT of T hidden states.  )(),...,2(),1( TT
r  





Tt

T
r

T ttvPVP   ))(|)(()|(          )1( 









Tt

t
r

ttPT
r

1

))1(|)(()P(         (2) 
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Using equations (1) and (2), we can write:

Interpretation: The probability that we observe the particular

))1(|)(( ))(|)(()(
max

1 1








r

r

Tt

t

T ttPttvPVP 

Interpretation: The probability that we observe the particular 
sequence of T visible states VT is equal to the sum over all rmax
possible sequences of hidden states of the conditional probability 
that the system has made a particular transition multiplied by the 
probability that it then emitted the visible symbol in our targetprobability that it then emitted the visible symbol in our target 
sequence.

Example: Let 1, 2, 3 be the hidden states; v1, v2, v3 be the visible 
statesstates 

and V3 = {v1, v2, v3} is the sequence of visible states

P({v1, v2, v3}) = P(1)P(v1 | 1)P(2 | 1)P(v2 | 2)P(3 | 2)P(v3 | 3)1 2 3 1 1 1 2 1 2 2 3 2 3 3

+…+   (possible terms in the sum= all possible (33= 27) cases !)
In general rmax=cT, where c is the number of states
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v1 v2 v3

First possibility:

1
(t = 1)

2
(t = 2)

3
(t = 3)

Second Possibility:

(t = 1) (t = 2) (t = 3)

v3v2v1

2
(t = 1)

1
(t = 3)

3
(t = 2)

P({v1, v2, v3}) = P(2)P(v1 | 2)P(3 | 2)P(v2 | 3)P(1 | 3)P(v3 | 1) + …+

Therefore:Therefore:

 





sequence

3

1
321 ))1(|)(())(|)((}),,({

possible

t

t

ttPttvPvvvP 


stateshidden  of
sequence 1possible t
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Algorithm

1. Initialize: t0, aij, bjk, visible sequence VT, 
aj(0)aj(0)

2. for tt+1
3. aj(t)bjkv(t)Σ ai(t-1) ajjj( ) jk ( ) i( ) jj

4. until t=T
5. return P(VT)a0(T)

aj(t): probability of being in state ωj at step t, 
ha ing generated first t elements of VThaving generated first t elements of VT

a0(T) is probability of sequence ending at 
known final stateknown final state
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Note: Typo in 
caption of Figcaption of Fig. 
3.10 in DHS. 
See errata.
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OutlineOutline
• Probability theory

• Bayes decision theory

• Maximum-likelihood and Bayesian y
parameter estimation

• Expectation maximizationExpectation maximization

• Non-parametric techniques

Hidd M k d l• Hidden Markov models 

• Principal component analysis
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Goal of PCAGoal of PCA

• Compute the most meaningful basis to re-Compute the most meaningful basis to re
express a noisy data set

• Hope that this new basis will filter out the noise p
and reveal hidden structure

• In toy example: 
– Determine that the dynamics are along a single axisy g g

– Determine the important axis
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Change of BasisChange of Basis
• X is original data (m×n, m=6, n=7200)
• Let Y be another m×n matrix such that Y=PXLet Y be another m×n matrix such that Y PX
• P is a matrix that transforms X into Y

– Geometrically it is a rotation and stretch
Th f P { } th b i t f th– The rows of P {p1,…, pm} are the new basis vectors for the 
columns of X

– Each element of yi is a dot product of xi with the corresponding 
row of P (a projection of xi onto pj)row of P (a projection of xi onto pj)
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How to find an
A i Ch f B i ?Appropriate Change of Basis?

• The row vectors {p1,…, pm} will become the principal {p1, , pm} p p
components of X

• What is the best way to re-express X?

• What features would we like Y to exhibit?

If we call X “garbled data” garbling in a linear system• If we call X “garbled data”, garbling in a linear system 
can refer to three things:
– Noise

– Rotation

– Redundancy
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• Ball travels in straight line
– Any deviation must be noise– Any deviation must be noise

• Variance due to signal and
noise are indicated in diagram

• SNR: ratio of the two lengths
– “Fatness” of data corresponds to noise

A i di i f l i i• Assumption: directions of largest variance in 
measurement vector space contain dynamics 
of interesto te est
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Redundancy
• Is it necessary to record 2 variables for the ball-spring 

system?

I it t 3 ?• Is it necessary to use 3 cameras?

Redundancy spectrum for 2 variablesRedundancy spectrum for 2 variables
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Sketch of AlgorithmSketch of Algorithm

• Pick vector in n-D space along which variance isPick vector in n D space along which variance is 
maximal and save as p1

• Pick another direction along which variance is g
maximized among directions perpendicular to p1

• Repeat until k principal components have been p p p p
selected
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Basic PCA AlgorithmBasic PCA Algorithm

• Start from m×n data matrix XStart from m n data matrix X
– m data points (samples over time)
– n measurement types 

• Re-center: subtract mean from each row of X
• Compute covariance matrix:p

– Σ=Xc
T Xc

• Compute eigenvectors and eigenvalues of Σ

Note: Covariance matrix is n×n (measurement types)
(But there may be exceptions)

• Principal components: k eigenvectors with 
highest eigenvalues
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SVDSVD

• Efficiently finds top k eigenvectorsEfficiently finds top k eigenvectors 
– Much faster than eigen-decomposition

• Write X = U S VT

– X: data matrix, one row per datapoint
– U: weight matrix, one row per datapoint –

di f i i icoordinates of xi in eigen-space
– S: singular value matrix, diagonal matrix

• in our setting each entry is eigenvalue λ of Σ• in our setting each entry is eigenvalue λj of Σ

– VT: singular vector matrix
• in our setting each row is eigenvector vj of Σ
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