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Abstract
Sparse channel arises in a number of applica-

tions in wireless communications such as channel 
estimation and signal processing. There is growing 
evidence that physical wireless channels exhibit 
a sparse structure, and channel sparsity has been 
even considered as a nature of channels in many 
recent research works. However, there still lacks a 
good measure of channel sparsity, and mostly the 
assumptions that channel is sparse or non-sparse 
are based on intuitive analysis without measure-
ment validation, which leads to some contradic-
tions. In this article, based on channel measurement 
data, it is pointed out that a widely-used assump-
tion, that wireless channels can be considered to 
be sparse, has pitfalls. Without loss of generality, 
the measurements are conducted in an urban sce-
nario with different degrees of channel multipath 
richness. The channel degrees of freedom, diversity 
measure, and the Ricean K factor are used to eval-
uate channel sparsity, and they are found to have 
fairly high accuracy of measuring degrees of chan-
nel sparsity. It is also observed from measurements 
that the degree of channel sparsity is not steady 
and a sparse channel may change to non-sparse 
within a short time/distance observation window. 
Moreover, sparse and non-sparse based channel 
estimators are evaluated based on the measure-
ments and the performances are analyzed. The 
results show that a sparse channel estimator can-
not guarantee stable estimation accuracy even in 
channels with a high degree of sparsity, and con-
siderable performance degradation will occur if 
a channel changes to non-sparse, which actually 
often happens in realistic communication scenarios 
and should be carefully considered in performance 
analysis. Some sparse channel related technical 
issues are also discussed in the article.

Introduction
The subject of wireless communications is to 
transmit wireless signals from a source to one or 
more destinations. Of particular importance in 
the analysis and design of wireless communica-
tion systems are the characteristics of the physi-
cal wireless channels, which generally affect the 
design of the basic building blocks of communica-
tion systems. The following three features of wire-
less channels have attracted extensive attention: 
multipath effect, channel fading, and openness. 
Multipath effect gives birth to the technology 
of Orthogonal Frequency Division Multiplexing 
(OFDM); channel fading attracts investigations on 

diversity methods; and open feature leads to new 
research branches on security.

In recent years, channel sparsity [1], another 
characteristic of wireless channels, has attracted 
strong interest and much attention from both aca-
demic and industrial circles. The sparse structure 
of physical channel can be understood as follows: 
•	 The number of multipath components (MPCs) 

in the environment is limited, especially for 
some scenarios with sparse scatterers and 
large propagation loss, such as millimeter wave 
(mmWave) communications.

•	 Wireless channels can be characterized by clus-
tered MPCs, that is, MPCs can generally be 
divided into groups with similar characteristics, 
and the number of groups is often small [2]. 

In fact, a large number of existing channel models 
have used the above-mentioned sparsity hypothe-
sis. For example, in the classical tapped delay line 
model, most of the energy in channel response 
can be included by using a small number of taps 
(generally no more than 20). Similarly, based on 
the assumption that MPCs exist in the form of 
clusters, many channel models based on cluster 
structure have been proposed. If wireless chan-
nels are sparse, not only the basic building blocks 
of communication systems, including sampling 
design, channel estimator, signal detector, and 
antenna deployment, but also the system archi-
tecture such as cloud radio access networks, will 
be largely different from the traditional ones and 
await further investigation.

One clear and direct influence of channel spar-
sity is channel estimation, since fewer training sym-
bols are needed and new estimation algorithms 
are to be developed. It is also worth noting that in 
some scenarios sparse channel estimation is nec-
essary [3]. For example, downlink channel state 
acquisition for frequency-division duplex wireless 
systems with massive multiple-input multiple-output 
(MIMO) has to explore channel sparsity in time, 
special or frequency domain so as to reduce the 
number of training symbols and also the amount 
of feedback overhead. For another instance, one 
popular method to estimate the fast time-varying 
channel parameters is to employ a basis expan-
sion model (BEM). BEM decomposes the channel 
parameters into the superposition of the time-vary-
ing basis functions weighted by a few time-invari-
ant coefficients, which is sparse representation of 
complicated channels.

Moreover, channel sparsity also has a strong 
impact on the existing channel data processing and 
channel modeling techniques. Compared to the 
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non-sparse channel, the MPC clusters distribute dif-
ferently in the spatial domain of sparse channels, 
and it leads to challenges to the clustering of MPCs. 
Due to the sparse distribution of clusters, the densi-
ty of MPCs in each cluster may significantly increase 
considering the scatterings and diffractions especial-
ly in higher frequency bands. This may impact some 
clustering approaches based on the statistic feature 
of intra-cluster. For time-varying channels, the high 
density of MPCs in each cluster may also cause 
difficulties in tracking methods, which is a neces-
sary procedure for analyzing the non-stationarity of 
time-varying channels. Consequently, the different 
characteristics of channel sparsity have an influence 
on modeling methods as well.

However, evaluating whether a channel is 
sparse or not is usually quite tricky. On one hand, 
densely distributed MPCs are often assumed due 
to the complex propagation environments and 
multipath propagation effect. On the other hand, 
a sparse structure is also assumed for the chan-
nel as some scenarios lack sufficient richness of 
MPCs in the propagation environments, especially 
for mmWave communications. Meanwhile, it is 
noteworthy that there still lacks a good measure of 
wireless channel sparsity and the both assumptions 
(the channel is sparse or non-sparse) are mainly 
based on intuitive analysis without measurement 
validation, which leads to some contradictions. For 
example, people mostly now consider a mmWave 
channel to be sparse; however, sparse channel esti-
mation was proposed for general non-mmWave 
radio channels [4]. Underwater acoustic channels 
are considered to be sparse since underwater MPC 
is not contiguous but consists of isolated signal 
arrivals [5]; however, some research works indicate 
that the underwater acoustic environment provides 
a time-varying richly-scattered environment [6], that 
is, a non-sparse channel. Sparse channel estimation 
in ultra-wideband channels was motivated by the 
ability to resolve individual MPC or clusters in the 
channels [7]; however, densely distributed MPCs 
are observed based on ultra-wideband channel 
measurements [8]. In addition, people usually con-

sider a channel to be sparse when the number of 
observed MPCs is small. However, this approach is 
found to be not accurate because it does not con-
sider the impact of MPC power [9]. The evalua-
tion of wireless channel sparsity is still a challenging 
task. It is also not clear whether a realistic channel 
exhibits sparsity according to measurements, and 
whether the scenarios with sparse or non-sparse 
channels are distinct. To fill the gap, this article 
presents measurement based analysis of channel 
sparsity in an urban vehicular scenario, and the 
measured data are used to evaluate whether a 
realistic channel is sparse and how the degree of 
channel sparsity changes in real propagation envi-
ronments. The results show that even in a similar 
environment, the change of MPC structure signifi-
cantly changes the degree of channel sparsity, and 
a sparse channel may change to non-sparse within 
a short time/distance observation window. Such 
phenomenon significantly affects the performance 
of sparse channel estimation algorithms in realistic  
communication environments. The obtained results 
are useful to understand channel sparsity in real 
propagation environments.

The rest of the article is organized as follows. 
The next section presents measurement-based 
channel sparsity evaluation. Then we present 
sparse channel estimation algorithms and analyze 
the performance using measurement data. Follow-
ing that we discuss some sparse channel related 
technical issues in communications. Finally, we 
conclude the article.

Channel Sparsity
Measurements

To obtain channel data for analysis, a wireless 
channel measurement campaign was conducted 
as shown in Fig. 1, and the data are used for spar-
sity measure evaluation and channel estimation. 
The data were obtained in an urban scenario in 
Beijing, China. The transmitter (Tx) and receiver 
(Rx) antennas were placed on top of two vehi-
cles with a height of 1.7 m, and the two vehicles 
were moving in the same direction with an aver-
age speed of 60 km/h (16.7 m/s). An omnidirec-
tional microstrip antenna was used at Tx and a 
16-element cylindrical antenna array was used at 
Rx as shown in Fig. 1b. The data were measured 
by using a self-designed channel sounder using 
components from National Instruments as shown 
in Fig. 1a, which mainly includes a vector signal 
generator at Tx and a vector signal analyzer at 
Rx. The carrier frequency was 5.9 GHz and the 
bandwidth was 30 MHz. 513 frequency points 
were measured in each snapshot. The transmitted 
signal power was 34 dBm and the average signal-
to-noise-ratio was approximately 24 dB. During 
the measurements, the Tx-Rx distance was around 
25 m, although it varied due to road conditions. 
More details of the channel sounding system can 
be found in [10]. We selected 49 different posi-
tions from the channel measurements for analysis. 
Since the vehicular environment has fairly high 
dynamics due to the movements of Tx/Rx and 
scatterers, the channel is time-varying and differ-
ent degrees of channel sparsity are expected as 
shown in Fig. 1c, where the densities of scatterers 
are different, which allows us to better analyze the 
impact of channel sparsity.

FIGURE 1. Measurement campaign.
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Channel Sparsity Evaluation

Accurately measuring channel sparsity has been 
a challenging task because there is no ground-
truth of channel sparsity, and a suitable measure 
is still missing to evaluate the degree of channel 
sparsity. According to the signal processing view-
point, a sparse representation of signals implies 
that a small number of elements in data contain 
a large proportion of the energy of the data. As 
suggested in [9], the channel degrees of freedom 
(DoF), diversity measure, and the Ricean K factor 
are used to evaluate the change of channel spar-
sity based on channel measurements. The DoF is 
defined as the rank of channel correlation matrix, 
which can be estimated by the eigenvalues for 
a noisy channel. The diversity measure identifies 
the eigenvalue spread of the channel correlation 
matrix. The Ricean K factor is defined as the ratio 
of the power of the dominant component to the 
power of the remaining components in the chan-
nel.

Figure 2 shows the relations of the estimated 
values of DoF, diversity measure, and Ricean K 
factor based on the measurements. It is found 
that the DoF increases with the diversity measure 
and the trend is generally linear with a cross-cor-
relation coefficient of 0.96. A sparse channel 
generally exhibits fewer channel DoF and diver-
sity measure, and this implies that both the DoF 
index and diversity measure are fairly accurate 
and sensitive to the change of channel sparsity. 
According to [9], the measured channels with 
low estimated values of DoF and diversity mea-
sure can be considered to be sparse. Moreover, 
it is observed in Fig. 2 that the estimated Ricean 
K factor decreases with the diversity measure and 
the corresponding cross-correlation coefficient 
is –0.47. The Ricean K factor is the ratio of the 
power of the dominant component to the power 
of the remaining components. According to the 
classic sparse representation that a small number 
of elements contain a large proportion of the total 
energy, a high value of K factor corresponds to 
a sparse channel. However, the cross-correlation 
between K factor and diversity measure is relative-
ly low, and this implies that using DoF and diversi-
ty measure will have higher accuracy to measure 
channel sparsity.

Figure 3 shows the continuous changes of 
DoF and diversity measure during the measure-
ments. The similar trend of the two curves in 
Fig. 3 verifies that they are positively correlated. 
Another important observation is that both DoF 
and diversity measure exhibit fairly high varia-
tions during the measurements, which implies 
that in realistic wireless channels, the degree of 
channel sparsity is not steady and it is significant-
ly affected by the propagation channel character-
istics. Even in a similar environment, the change 
of MPC structure and distribution may signifi-
cantly change the degree of channel sparsity. A 
sparse channel may change to non-sparse with-
in a short time/distance observation window. 
Therefore, the assumption that channel is always 
sparse in certain scenarios may be questionable. 
Actually, we find that the dynamic of channel 
sparsity is much higher than it was reported, and 
this results in further challenges to the sparse 
channel estimation algorithm.

Channel Estimation
Sparse Channel Estimation Algorithms

The typical mathematical model for wireless com-
munication systems can be expressed as y = Sh 
+ w, where S denotes the training sequence, h 
represents the wireless channels to be estimated, 
and w is the noise item often assumed as Gauss-
ian. There are two traditional estimators to obtain 
h from the received signals y when the training 
sequence S is known [11]: the least square (LS) 
estimator ĥ = (SHS)–1)SHy and the linear mini-
mum mean square error (LMMSE) estimator ĥ = 
RhSH(SRhSH + Rw)–1y. Here, Rh and Rw are the 
correlation matrices of the channels h and the 
noise w, respectively. In summary, the LS estima-
tor treats the channels h as constants and does not 
require any prior information about noise, while 
the LMMSE estimator considers the channels h 

FIGURE 2. Relations of the estimated values of DoF, diversity measure, and 
Ricean K factor based on the channel measurements.
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FIGURE 3. Continuous changes of the estimated values of DoF and diversity 
measure during the channel measurements.
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as random variables and needs the second-order 
statistics of both channels h and noise w.

When channels h are sparse, that is, the vector 
h contains many zero elements, sparse channel 
estimators can be motivated. Generally speaking, 
there exist five classes of sparse channel estima-
tors [12]: exhaustive search, greedy pursuit, convex 
relaxation, non-convex approximation and optimi-
zation, and Bayesian approach. Figure 4 illustrates 
all these estimators.

An exhaustive search estimator lists all possi-
ble sets for the vector h from which to obtain the 
one that can minimize ||y – Sh||2

2. Clearly, such a 
method can find the optimal solution at the cost of 
large time complexity even when certain pruning 
strategies are adopted. Accordingly, the exhaus-
tive search estimator is often limited to small-scale 
problems.

A greedy pursuit estimator utilizes greedy strate-
gy to obtain the currently optimal choice and then 
iteratively finds the next components. For instance, 
the orthogonal matching pursuit (OMP) method, 
a classic greedy pursuit estimator, first normalizes 
the training matrix S, identifies the component that 
produces the greatest improvement and subtracts 
its impact from the vector y, and then repeats the 
above process so as to successively obtain the next 
components.

A convex relaxation estimator replaces the 
non-convex constraint ||h||0 with convex ones 
such as ||h||1 and later exploits some features 
to solve the convex problem. The final solution is 
globally optimal for the transformed convex prob-
lem but locally optimal for the original non-convex 
problem.

A non-convex estimator approximates the zero 
norm condition ||h||0 as ||h||p (0 < p < 1) which 
can be further transferred as one non-convex prob-
lem where a stationary point can be located. For 
example, the optimization of ||h||p can be trans-
formed as a weighted ||h||2

2 optimization problem 
whose solution can be obtained iteratively.

A Bayesian estimator assumes the channels h as 
random variables with parameterized prior sparse 
distribution and designs a maximum a posteriori 
estimator, that is, maxhp(h|y). In the case of Gauss-
ian signals, Bayesian estimators aim to calculate 
E(h|y) as the channel estimates.

In summary, exhaustive search estimators 
achieve optimal solutions at the cost of time; 

greedy, convex, and non-convex estimators use 
approximation strategy to obtain suboptimal or 
optimal solutions; while Bayesian estimators preset 
prior information for channel parameters and moti-
vate Bayesian philosophy. Every type of the five 
estimators has its wisdom and merits as well as dis-
advantages. Given one sparse channel estimation 
problem, it is a challenge to choose one that can 
obtain the best estimation performance within an 
acceptable time period. Few studies provide prac-
tical measurement data to test and compare these 
estimators, which is investigated in the following 
subsection.

Implementation and Results
As mentioned previously, the channel was mea-
sured for 49 different positions in an urban sce-
nario. In each position, we have obtained channel 
parameters from the 16 Rx antenna elements, and 
each channel consists of 513 channel paths. That 
is, we have a three dimensional channel matrix 
with 49   513  16 parameters. Let n denote 
the position order and suppose the kth anten-
na transmit symbols s(n, k) through an Orthog-
onal Frequency Division Multiplexing (OFDM) 
scheme. Assume the transceivers have perfect 
synchronization, we can have the basic simplified 
system model r = Sh + w, where r is the received 
OFDM symbols consisting of r(n, k), S represents 
the transmitted symbol matrix constructed by s(n, 
k), h = [h1, h2, …, hN]T is the flat-fading channels 
to be estimated and N = 49, and w denotes the 
noise. Clearly, the goal is to obtain the channel 
estimates ĥ.

When the channels h are sparse in some 
respect, we can further have h = Bm, where B is 
the orthonormal transformation basis matrix and 
vector m contains many zero elements. One special 
case is that the length of vector m is much less than 
that of h. The vector h is said to be d-sparse in the 
B domain if vector m contains only d nonzero ele-
ments. Accordingly, we can obtain r = SBm + w. 
Clearly, the goal is to estimate the sparse vector 
m. There exist two key problems in estimating m. 
One is to determine the matrix B and the other is 
to decide the value of d. We address the two prob-
lems as follows.

We first calculate the correlation matrix R of 
the channel parameters from 49 positions, and 
then apply eigen-decomposition to the correlation 

FIGURE 4. Traditional and sparse channel estimators.
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A sparse channel may 
change to non-sparse 
within a short time/
distance observation 
window. Therefore, the 
assumption that chan-
nel is always sparse 
in certain scenarios 
may be questionable. 
Actually, we find that 
the dynamic of channel 
sparsity is much higher 
than it was reported, 
and this results in fur-
ther challenges to the 
sparse channel estima-
tion algorithm.
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matrix R. We then choose the normalized eigen-
vector matrix of R as the basis matrix B. Next, for 
each position, we check the eigenvalues of the 
channel correlation matrix R so as to set the values 
for d. Specifi cally, we set a threshold through locat-
ing the fi rst d eigenvalues that account for 99 per-
cent of the sum of all eigenvalues. Subsequently, 
we set the training number the same as d and uti-
lize both traditional and sparse estimator to obtain 
the channel estimates ĥ. We choose LS as the tradi-
tional estimator due to its simplicity and no require-
ment of any prior information. We first estimate 
the channel parameters corresponding to the pilots 
through LS and then recover other channel param-
eters through linear interpolation. On the other 
hand, we choose the OMP algorithm as our sparse 
estimator. We fi rst obtain the estimate m̂ and then 
recover the channels ĥ = Bm̂ . Finally, we choose 
the mean square errors (MSEs) for the channel as 
the fi gure of merit. We plot MSEs versus measure-
ment positions in Fig. 5. It can be observed that the 
MSE performance of the sparse channel estimator 
signifi cantly varies at diff erent positions, while the 
traditional estimator has relatively stable MSEs. It 
indicates that realistic channels generally have var-
ious degrees of channel sparsity for diff erent posi-
tions, which will result in large variation at MSEs for 
the sparse channel estimator and small variation 
at MSEs for the traditional LS estimator. In other 
word, even though the sparse channel estimator 
can achieve better performance for the channels 
with high degree of sparsity, considerable perfor-
mance degradation will occur if the channel chang-
es to non-sparse, which actually often happens in 
realistic communication scenarios.

We also show MSEs versus channel DoF in 
Fig. 6. It can be seen that the traditional LS esti-
mator generally has similar performance when 
DoF increases and it is not significantly affected 
by the degrees of channel sparsity, which follows 
the results in Fig. 5. However, the performance of 
the sparse channel estimator somehow decreas-
es when DoF increases, which further validates 
that when the channel changes to non-sparse, the 
performance of the sparse channel estimator is 
degraded. The LS estimator mostly outperforms 
the sparse channel estimator in the case of large 
channel DoF. Meanwhile, Fig. 6 also shows that the 
sparse channel estimator has various performanc-
es when the channel DoF is small. The reason is 
that we choose the OMP based sparse estimator 
that cannot guarantee stable estimation accuracy. 
Diff erent sparse estimators produce diverse perfor-
mances even when channels are sparse and fi xed, 
which implies that the choice of sparse channel 
estimator is one key deciding factor in estimation 
performance.

dIscussIons
IMpAct of MeAsureMent

We usually need channel measurements to obtain 
data for evaluating channel sparsity. However, the 
measurement configuration significantly affects 
sparsity evaluation. For example, many recent 
measurements show that the dense multipath 
component (DMC) scatterings from environments 
are signifi cant, and they usually lead to non-sparse 
channels [13]. However, the extraction of DMC 
depends on transmit power and dynamic range 

of the channel sounder. If transmit power is low, 
the DMCs are merged into the noise floor and 
the channel shows sparsity; if transmit power is 
increased and dynamic range of the sounder is 
fairly large, the DMCs can be measured and the 
channel may be non-sparse. It is thus challenging 
to distinguish sparse channels based on physical 
propagation and system confi guration.

spArse chAnnel soundIng
For massive MIMO channel sounding, because of 
its large array size and the resulting non-station-
arity in the local space of the array, the sparse 
MPCs in space will aggravate the diff erence of sig-
nals received by diff erent antenna elements of the 
array. Therefore, the infl uence of channel sparsity 
should not be ignored when designing massive 
MIMO channel sounders. In addition, for virtual 
MIMO channel sounders using a 3D rotating plat-
form and directional antennas, channel sparsity 
can be used to optimize the testing process and 
reduce measurement time consumption.

Channel sparsity can also be exploited for data 
acquisition of the channel sounder. For ultra-wide-
band and dynamic channel measurements, the 
large bandwidth (>1 GHz) and high snapshot 
acquisition speed usually make channel sounders 
face difficulties in data acquisition, storage and 
transmission. For sparse channel measurements, 
characteristics of sparse signals can be used based 
on compressed sensing theory. Specifi cally, a small-
er sampling rate can be used and the signal can be 
perfectly reconstructed by using a nonlinear recon-
struction algorithm, thereby realizing effi  cient and 
low-complexity data acquisition.

spArse chAnnel ModelIng
Diff erent with the non-sparse channels, the path 
loss and attenuation of refl ection, scattering, dif-
fusion and penetration of the sparse channels 
are generally increased because of the reduced 
MPCs. In other words, signal power decays fast-
er with propagation distance in sparse channels, 

FIGURE 5. MSEs versus measurement positions for the traditional and sparse 
channel estimators using the measurement data.
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where some MPCs cannot be further detected 
due to the low power. As a result, the sparse 
channels show more distinct cluster-based struc-
ture, where only dominant clusters can be well 
observed. The number of MPCs inside each clus-
ter has impact on the statistical distribution of 
MPCs. Hence, the inherent characteristics of the 
sparse channels bring a new challenge to channel 
characterization. Moreover, since sparse channels 
generally show a distinct cluster structure, some 
classic clustering algorithms with low complexity 
may have good performance, and the sparse clus-
ter structure may lead to a low-complexity chan-
nel model, which concentrates more on dominant 
components in channels.

spArse chAnnel estIMAtIon
It is true that sparse sensing based channel esti-
mation can save training symbols, reduce feed-
back overhead and improve system performance. 
However, it is an open challenge to tell if the 
channels are sparse in certain domains or not. 
These domains can be time, frequency, spatial, 
or some specially defined space. Consequent-
ly, choosing which type of channel estimator is 
the next challenging problem. How to design an 
optimal training sequence and how many gains 
can be obtained with optimal estimators are also 
unknown issues that are worth further investiga-
tion. Moreover, the communication scenario also 
has an impact on the use of channel sparsity. For 
example, in high speed railway communications, 
sparse channels can be better predicted since a 
strong line-of-sight path exists and trains run on 
fixed tracks. Therefore, it is possible to design 
compressed sensing estimators that explore chan-
nel sparsity related with environments and space.

spArse chAnnel beAM selectIon
Compared to the non-sparse channel, the sparse 
channel shows a significant difference in the 
space domain or even the frequency domain as 
well. For beam selection, pros and cons come 

with these new channel properties. The ultimate 
goal of beam selection is to avoid the interfer-
ence between diff erent terminals through beam-
forming. Meanwhile, how to select and continue 
tracking the beam with an appropriate compu-
tation complexity is always an essential problem. 
Benefi tting from the sparsity of the channel in the 
space domain, the distinctive cluster distribution 
makes interference management easier, which 
leads to a relatively lower computation complexi-
ty of beam selection. Nonetheless, a sparse chan-
nel also means limited choices of beam selection 
for each terminal. As a result, terminals no longer 
have various accessible beams. This brings more 
diffi  culties for the network to achieve a theoretical 
performance boundary. Therefore, new optimi-
zation of channel resources considering channel 
sparsity are needed.

IntellIgent chAnnel spArsIty IdentIfIcAtIon
In order to effi  ciently apply the designed sparse-
channel-based algorithms and techniques, it is 
necessary to accurately identify the channel spar-
sity state. Under such conditions, channel esti-
mation can be further enhanced and improved 
by using the accurate real-time state of channel 
sparsity. For practical communication systems, 
two issues should be considered for sparse chan-
nel identifi cation: 
• Accuracy: the system needs to accurately iden-

tify whether the current channel is sparse and 
what is the degree of sparsity.

• Real-time: for communication in dynamic chan-
nels, the system needs to be able to sense the 
change of channel sparsity in real-time. 

An expected solution is to drive the intelligence 
of sparse channel identification based on arti-
ficial intelligence. Sparse channel identification 
can be generally considered as a classification 
problem, which can be well solved by machine 
learning. Test data collected in various environ-
ments with known sparsity can be used as training 
datasets, and intelligent algorithms can be used to 
train sparsity identifi cation models. The obtained 
model can be used to realize real-time and accu-
rate channel sparsity identifi cation.

conclusIon
In this article, measurement based channel sparsity 
analysis and estimation are presented. The work 
focuses on evaluating whether a realistic channel 
is actually sparse and how the degree of channel 
sparsity changes in real propagation environments. 
The data measured in a vehicular urban scenario 
are used, which include fairly rich degrees of MPC 
richness. Considering the challenges of accurate-
ly measuring channel sparsity, three indicators of 
DoF, diversity measure, and the Ricean K factor 
are used to evaluate channel sparsity jointly. The 
LS and OMP based channel estimations are con-
ducted using the measurement data, representing 
sparse and non-sparse channel estimations, respec-
tively. The results show that the dynamic of channel 
sparsity is much higher than it was reported before, 
and mostly, the scenarios with sparse or non-sparse 
channels are not distinct. Even though the sparse 
structure of a channel has been widely assumed 
before, it should be carefully used because for 
real propagation channels, the degree of channel 
sparsity is not steady and a sparse channel may 

FIGURE 6. MSEs versus channel DoFs for the traditional and sparse channel 
estimators using the measurement data. 
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change to non-sparse within a short time/distance 
observation window. In such a case, considerable 
performance degradation will occur for a sparse 
channel estimator. Even in sparse channels, the 
sparse channel estimator cannot guarantee stable 
estimation accuracy. Finally, the impacts of chan-
nel sparsity on channel measurements and mod-
eling, estimation, and beam selection are further 
discussed and insights are presented. The results 
in the article can be used to better understand 
channel sparsity in real propagation environments 
and further improve the use of a sparse channel in 
wireless communications. We encourage further 
measurement-based validations of channel sparsity 
and the impacts on channel estimation in various 
frequency bands and propagation scenarios.
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