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AbstrAct
Non-orthogonal multiple access (NOMA) is 

a promising evolution path to meet the require-
ments of massive machine type communications 
(mMTC) in 5G and beyond. However, the deploy-
ment of NOMA is hindered by the non-unified 
signal processing architectures of various NOMA 
schemes and the inflexibility resulting from the 
offline design paradigm. The block-wise optimized 
transceivers make its performance far from the 
limit. The recent breakthrough of deep learning 
and its positive applications to wireless commu-
nications have paved the way to tackle these 
challenges. This article studies the effectiveness 
and efficiency of deep learning in enhancing 
NOMA performance. Specifically, we first present 
the deep neural network (DNN), which is con-
structed via a uniform signal processing architec-
ture, and use it as the unified multiuser receiver 
in both data and model-driven approaches. This 
enables the end-to-end optimization of NOMA 
transceivers due to the universal function approx-
imation property of DNN. On the other hand, 
with DNN we can automatically extract the user 
access behaviors out of the time-series signals and 
optimize the transceivers to match these cross-lay-
er behaviors. We further analyze the integration 
of non-orthogonal communication and neural 
computation to accomplish high-efficiency data 
transmission at low cost. Finally, we identify some 
essential future directions of deep-learning-en-
hanced NOMA from the perspectives of online 
reconfigurability and adaptability toward the ever 
changing environment in future mMTC.

IntroductIon
The Internet of Things (IoT) has been the thriving 
application to connect hundreds of billions devic-
es worldwide. As the technical enabler of IoT, 
massive machine type communications (mMTC), 
which targets machine-centric radio access, is 
becoming a dominant communication paradigm 
in 5G. When massive devices encounter scarce 
radio resources, the commonly deployed orthog-
onal multiple access (OMA) makes it a bottleneck 
for mMTC to support ever increasing connectivity 
for 5G and beyond [1, 2].

In this context, non-orthogonal multiple access 
(NOMA) has been introduced as the critical 

enabling technology for mMTC to improve the 
connection density and spectral efficiency [1–3]. 
The idea behind NOMA is to overlap multiple sig-
nal streams with controllable mutual interference 
using the elaborately designed multiple access sig-
natures (MASs), and then use a multiuser detec-
tion algorithm to distinguish the superimposed 
signals. The 3rd Generation Partnership Project 
(3GPP) completed the standardization of down-
link NOMA in LTE Release 14, and has consid-
ered it a candidate research route for 5G mMTC 
[1]. More recently, 6G radio access is expected 
to be intelligent and ubiquitous with 100 times 
higher connectivity than 5G mMTC. NOMA is 
thus regarded as a promising research trend in the 
continuous evolution of mMTC toward 2030 [1].

The deployment of NOMA for future mMTC, 
however, is hindered by the following challenges: 
• Lack of unified signal processing architec-

ture: The signal formats of the diverse exist-
ing NOMA schemes are significantly different, 
requiring corresponding signal processing 
structures at the transceivers. This incompati-
bility causes difficulty in merging the NOMA 
schemes toward both standardization and 
implementation. A unified signal processing 
architecture is called for in order to avoid 
secluding each of the various NOMA schemes.

• Lack of end-to-end optimization: Existing 
works on NOMA isolate the design of the 
transceivers. This block-wise design leads to 
performance loss due to the simplified and 
independent models. In contrast, end-to-end 
optimization can push the performance limit of 
NOMA because it directly optimizes the ulti-
mate performance metric without block divison 
or simplifications.

• Lack of intelligent and fast environmental 
adaptation: Current NOMA schemes adopt 
offline design and prior configuration, and thus 
cannot deal with unexpected situations such as 
a nonlinear propagation environment. Hence, it 
is necessary to arm NOMA with online learning 
so that it can adapt to the dynamic environ-
ment.
Artificial intelligence (AI), especially deep 

learning technology, has achieved great success 
in solving very complicated , even intractable, opti-
mization problems in a data-driven fashion [4–6]. 
With the aim to extract useful distributed repre-
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MASSIVE MACHINE-TYPE COMMUNICATIONS FOR IOT sentation of multi-level features from the original 
signals, deep learning has displayed superiority 
in computer vision and natural language process-
ing. The booming deep learning has also shed 
new light in enhancing physical-layer technologies 
including NOMA [7–11]. Specifically, with the 
universal function approximation property, a deep 
neural network (DNN) can recast the transceiv-
ers of NOMA. Its uniform structure would also 
enable the unified signal processing architecture 
for NOMA. Moreover, joint transceiver optimiza-
tion can be achieved via the DNN-based auto-en-
coder and the end-to-end reconstruction loss. The 
automatic learning capability of online deep learn-
ing technology can further energize NOMA with 
environment adaptation ability.

This article is devoted to elaborating on how 
deep learning helps to tackle the above challeng-
es of NOMA. We first deploy deep learning to 
enhance the multiuser receiver (Rx) from both 
data-driven and model-driven viewpoints. We 
then illustrate deep learning as the enabler of end-
to-end NOMA transceiver optimization, under 
the guidance of domain knowledge or practi-
cal transmitter (Tx) constraints. The integration 
of computation and communication in NOMA 
via end-to-end learning is also treated. We study 
the ability of deep learning in the excavation and 
exploitation of upper-layer data for transceiver 
design. Finally, we discuss promising future direc-
tions of deep-learning-enhanced NOMA for 
future mMTC. The organization of this article 
is shown along with the typical NOMA system 
model in Fig. 1.

rx: MultIuser detectIon desIgn
In NOMA, the signals of different users are sent 
non-orthogonally. In order to eliminate inter-user 
interference (IUI), multiuser detectors (MUDs) are 
applied at the receiver to distinguish the superim-
posed signal streams. Advanced MUDs, such as 
successive interference cancellation (SIC), parallel 
interference cancellation (PIC), and message pass-
ing algorithm (MPA), have been developed for 
different NOMA schemes. However, a unified sig-
nal processing architecture for multiuser detection 
is still lacking. Enhancing MUD via DNN can bring 
unified architecture, along with better detection 
accuracy and reduced processing delay. In gener-
al, DNN-based designs can be largely categorized 
into data-driven and model-driven approaches. 
A data-driven approach deploys vanilla DNNs, 
which lead to less design effort but increased 
training data requirement. On the contrary, a 
model-driven approach exploits expert knowledge 
of NOMA to relieve the data requirement and 
promote learning efficiency. In the following, we 
discuss both data-driven and model-driven designs 
of DNN-based MUDs.

dAtA-drIven desIgn
NOMA detection aims to jointly recover the 
source messages of multiple users in a limited 
search space, which is equivalent to the classifica-
tion problem in machine learning. Therefore, we 
can apply the standard neural network, fully con-
nected DNN (FC-DNN), as shown in Fig. 2a, and 
train it using a synthetic dataset in such a way that 
the symbol error rate is minimized [7]. The data-
set consists of labeled data pairs, each including 

the received superimposed signal and the source 
messages. After the convergence of offline train-
ing, the trained DNN is deployed online where 
detection can be done in a single shot and thus 
holds much less computational delay than the 
conventional iterative-based detector (e.g., MPA).

With the universal function approximation 
property, data-driven DNN is compatible with any 
NOMA scheme once the network parameters are 
updated according to the specific NOMA trans-
mitters, without any change of the network struc-
ture. The multiple hidden layers also prompt the 
approximation of the complicated NOMA signals, 
which ensure better detection accuracy than the 
conventional shallow learning methods. While the 
data-driven approaches can normally achieve bet-
ter performance with less complexity, their per-
formance heavily depends on a huge amount of 
labeled data, as the network cannot gain much 
insight if the training set is small. Also, data-driven 
methods do not utilize the structure of NOMA sig-
nals and thus lead to low training efficiency. Mean-
while, the classification types increase exponentially 
as the increase of user number, which requires 
large width of hidden layers in DNN and brings 
high complexity. Moreover, the lack of a theoreti-
cal understanding about the relationship between 
neural network structure and performance leaves 
its structure unexplained and unpredictable.

superIMposed sIgnAl Model-drIven desIgn
In contrast to the pure data-driven deep learning, 
model-driven design constructs the DNN struc-
tures based on known algorithms and domain 
knowledge, which can balance the efforts in 
exploration and exploitation [4, 5]. The idea of 
model-driven design has been incorporated in 
multiuser detection for NOMA, which aims to 
take advantage of the signal processing struc-
ture of the existing MUDs while still retaining the 
strong learning capability of DNN. The unique 
insight is about the exploitation of the superim-
posed signal model or existing NOMA detec-
tion algorithm models in the design of DNN 
structures. Compared to its data-driven counter-
part, a model-driven MUD can realize multiuser 
detection with lower computational complexity. 
The following parts analyze typical model-driven 
design ideas for MUDs: deep unfolding and deep 
parameterization.

FIGURE 1. NOMA system model and the organization of this article.
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Deep Unfolding: The NOMA system can be 
described as a bipartite Tanner graph. The graph 
consists of variable nodes (VNs) and function 
nodes (FNs), where the former and the latter 
correspond to NOMA transmit codeword and 
orthogonal radio resources, respectively. Belief 
propagation-based algorithms, such as MPA and 
expectation propagation algorithms (EPAs), are 
commonly deployed on the Tanner graph to 
approach near-optimal multiuser detection. 

Given any iterative signal processing method, 
it is straightforward to unfold the iterations into 
a nested structure that is similar to the layered 
structure of DNN [6]. To unfold the iterative mul-
tiuser detection algorithm, we regard the VNs and 
FNs in each iteration as a pair of neuron layers 
and cascade the layers along with iterations. The 
neurons are then connected with edges accord-
ing to the construction of the Tanner graph. The 
edges between the neurons are assigned with the 
weights that allow the network to exactly resem-
ble the iterative algorithm. Then the weights are 
regarded as trainable parameters and are tuned 
with synthetic dataset using gradient descent-
based optimization methods to achieve better 
detection accuracy.

Since the initialization of a deep-unfold-
ing-based method can perfectly mimic the con-
ventional multiuser detection algorithms, the 
system performance can be guaranteed. More-
over, the algorithms are fi rst put on the unfolded 
DNN structure, which can shrink the hypothe-
sis space and thus reduce the training overhead. 
Nevertheless, the strict prior placement on DNN 
introduced by unfolding eventually results in unal-
terable structure, which may hinder the self-learn-
ing ability of deep learning.

Deep Parameterization: As an alternative 
approach, the deep parameterization methods 
consider a general signal processing architecture 
inspired by the existing MUDs and introduce 
DNN to parameterize the major parts within 
the architecture [8, 10, 12]. This design para-
digm can exploit the joint benefi ts of the domain 
knowledge of NOMA and the universal function 
approximation ability of DNN, which is a trade-off  
between exploitation and exploration.

Recall that the concept of NOMA origi-
nates from multi-user information theory, where 
superposition transmission and interference 
cancellation (IC) are developed in an infor-
mation-theoretic perspective to approach the 
outer bound of the multiple access channel 
capacity pentagon. The IC technique has also 
been incorporated in the state-of-the-art MUDs 
to lessen the IUI and reduce the complexity. 

Based on the concept of IC, model-driven deep 
learning has been utilized to enhance the per-
formance of MUDs.

One typical design is the SIC-inspired DNN-
based MUD [10, 12], as shown in Fig. 2b. The 
SIC-inspired methods are based on the con-
ventional SIC detection structures, where each 
detection layer in SIC is replaced by DNN before 
operating data-driven optimization. As shown in 
the two-user example in Fig. 2b, reconstruction of 
the output signal of the fi rst branch is cancelled in 
the second branch so that the IUI can be mitigat-
ed. Since each branch only targets estimating the 
signal of a single user, SIC-inspired structure can 
deploy a signifi cantly reduced number of neurons 
within each branch compared to FC-DNN.

The drawbacks of the above SIC-inspired 
structure involves the increased successive pro-
cessing latency and inflexibility caused by the 
predetermined detection order where the latter 
may introduce unexpected error propagation. 
A straightforward solution is to deploy parallel 
detection branches and introduce inter-branch 
IC. We illustrate the design example, which is 
inspired by the PIC and message passing (MP) 
detector to take advantage of the parallel pro-
cessing ability of DNN, as displayed in Fig. 2c. 
Here, the inter-branch connections are designed 
to pass the messages such that each branch can 
use the side information to derive better esti-
mations. The hidden layers are further divided 
into multiple stages. For each stage, we roughly 
estimate the signals and use the estimated results 
to cancel the interference. By doing so, the 
superimposed NOMA signal is split into some 
less-interfered signals, which can be detected 
with low complexity. To mitigate the error prop-
agation introduced by IC, the IC mechanism is 
also allowed to be learned [8]. Recent research 
has shown the superiority of model-driven deep 
learning with respect to representational power, 
multiuser detection accuracy, and processing 
delay [8, 10, 12].

tx-rx: end-to-end desIgn
Existing research adopts the block-wise optimi-
zation paradigm, which isolates the design of 
NOMA transceivers. However, this divide-and-
conquer philosophy has introduced simplified 
operations in the transmitter design and cannot 
simultaneously optimize the overall performance. 
Thus, it is diffi  cult to approach the performance 
limit of the complicated multiuser system for 
mMTC. In this section, we reconstruct NOMA 
transceivers with DNNs to realize end-to-end 
optimization. By involving more tunable vari-

FIGURE 2. Deep-learning-enhanced multiuser detectors.
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ables, the end-to-end design normally achieves 
better performance than solely optimizing the 
receiver.

Then we study the use of deep learning to sat-
isfy realistic constraints on the mMTC transmitter 
(e.g., geometric constellation shape or finite-al-
phabet constraints). The end-to-end deep learn-
ing framework of NOMA can also facilitate the 
integration of communication and computation 
where non-orthogonal transmission inherently per-
forms over-the-air computation.

end-to-end frAMeworK: deepnoMA
DeepNOMA is a unified framework for NOMA 
[8]. To resemble the end-to-end NOMA system, 
DeepNOMA adopts an auto-encoding struc-
ture, shown in Fig. 3a, which comprises a mul-
tiple access signature mapping module, namely 
a NOMA encoder, a channel module, and a 
multiuser detection module (NOMA decoder). 
The source messages are encoded by NOMA 
encoders into multi-dimensional complex symbol 
vectors, which are then superimposed on orthog-
onal resource elements (REs). Subsequently, the 
NOMA decoder recovers the source messages 
for all users.

In the DeepNOMA framework, DNN acts as 
an underlying universal function approximator 
providing strong learning ability to learn near-op-
timal transceivers. Offline training and online 
deployment are adopted for DeepNOMA. We 
can first train DeepNOMA in offline mode to 
derive good transceivers by minimizing the over-
all cross-entropy or l2 reconstruction loss over 
the synthetic dataset. Then the trained encoders 
and decoder are deployed at the transmitters and 
receiver, respectively, for online NOMA transmis-
sions.

While FC-DNN is certainly applicable to 
DeepNOMA [7], a model-driven approach 
should be exploited to design the structures of 
DeepNOMA to improve the training speed. The 
major insight is that we can regard the super-
imposed NOMA transmissions as multiple dis-
tinctive but correlated tasks. This indicates that 
the design of DeepNOMA should be different 
from that of OMA, which only occupies a single 
task [4]. This concept motivates the incorpora-
tion of deep multi-task learning in DeepNOMA 
to realize inductive migration among multiple 
NOMA transmission tasks. Deep multi-task learn-
ing deploys the public hidden layers to provide 
inductive bias from one task to the other, which 
prompts the DNN to reach better generalization. 
With the shared feature extracted out of the pub-

lic DNN, multiple private DNNs are then placed 
to generate outputs for NOMA users. Specifi cal-
ly, inter-task connections are introduced to prop-
agate instant information among tasks for better 
demultiplexing. We see that the above multi-task 
structure actually matches the PIC-inspired DNN 
proposed Fig. 2c, where the interactions among 
tasks are specifi ed as IC modules.

DeepNOMA can also deal with fading channel 
eff ects by feeding the fading channel coeffi  cients 
into the NOMA decoder. In this case, the joint 
optimization of the NOMA encoder and decoder 
is carried out using a synthetic dataset generated 
in fading channels. It is shown that the multi-task 
structure improves the effi  ciency of DeepNOMA 
in fading channels.

To ensure fairness among NOMA transmission 
tasks during gradient-based training, the multi-task 
balancing technique is developed by introduc-
ing the fairness penalty, which aims to weaken 
or reinforce the back-propagated gradients of 
the tasks whose performance is beyond or below 
average. Using fairness penalty can be regard-
ed as a generalization of min-max optimization 
that guarantees fairness among users and avoids 
local optima [8]. Figure 4a illustrates the uncoded 
bit error rate (BER) performance of deep-learn-
ing-enhanced NOMA and conventional NOMA 
in fading channels with typical overloading of 
150 percent, where six users overlap on four 
orthogonal resources. The result shows that mod-
el-driven design remarkably improves BER perfor-
mance more than either conventional schemes 
or the pure data-driven scheme. Furthermore, we 
observe that the end-to-end optimization can pro-
vide additional BER gain compared to solely opti-
mizing the DNN receiver.

tx constrAInt In end-to-end desIgn
NOMA encoders are the key components of the 
end-to-end design framework. As mMTC services 
involve a large number of power-constrained and 
low-cost devices, the demand for an easy-to-im-
plement transmitter arises, which puts additional 
constraints on NOMA encoders.

If we parameterize the NOMA encoder in 
Fig. 3a with FC-DNN, the derived multiple access 
signatures for NOMA can be in arbitrary forms 
(i.e., the transmit signal alphabet is not in a reg-
ular shape such as lattice constellation). The 
irregular alphabet may worsen the peak-to-av-
erage ratio performance and cause additional 
hardware complexity. One possible solution to 
this problem is to introduce regulations on a 
NOMA encoder by constraining the output of 

FIGURE 3. Deep-learning-enhanced joint transmitter and receiver optimizations.
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a NOMA encoder to be in a certain geometric 
shape. To achieve this, the desired geometrical 
shape of the transmit alphabet should be embed-
ded in the encoder DNN, and only the param-
eters related to the shape are optimized during 
training. This design also reduces the number of 
trainable parameters and enhances the learning 
effi  ciency.

For low-cost mMTC devices, finite-alphabet 
signature is required at NOMA transmitter to be 
compatible with a finite-resolution digital-to-an-
alog converter (DAC). To satisfy this constraint, 
the existing method adopts a divide-and-con-
quer design approach. First, the signatures are 
optimized in a real number field. Then the con-
ventional NOMA signatures are quantized during 
online implementation. As an example, NOMA 
spreading signatures, such as Welch-bound equal-
ity (WBE) sequences, can be projected onto the 
QAM constellations during implementation [1]. 
However, the quantization can cause unexpect-
able cross-correlation among signatures, which 
results in unpredictable degradation of the trans-
mission accuracy.

With the recent development of quantized 
neural network (QNN), we are able to realize 
the joint optimization of signature optimization 
and quantization. A QNN-based NOMA encoder 
with quantization module is proposed in Fig. 3b 
to design the fi nite alphabet spreading sequences 
[10]. However, using quantization causes indiff er-
entiable DNN mapping function, which cannot 
be trained by a conventional optimizer. Therefore, 
the straight-through optimizer is developed, which 
uses the quantized version of signal in forward 
propagation while only training the full-precision 
weights of the encoder. Specifi cally, as illustrated 
by the gray arrow in Fig. 3b, forward propagation 
passes the input through a DNN encoder as well 
as a quantizer to generate the NOMA codeword. 
The NOMA codeword is then recovered by the 
NOMA decoder to output the estimated source 
signal. Then the loss function is calculated by com-
paring the output and the training label. During 
backward propagation, as illustrated by the black 
arrow, the quantizer is bypassed, and only the 
weights of the encoder are adjusted according to 
the loss until convergence. As observed in Fig. 4a, 
introducing quantization in DNN does not cause 

significant performance loss, especially in medi-
um-to-low SNR regions.

end-to-end desIgn for 
IntegrAted coMMunIcAtIon And coMputAtIon

Massive devices will be connected in future IoT to 
collect a large amount of data. The collected data 
is transmitted to the center processing unit (CPU), 
which processes the data locally to generate the 
computation results. Conventionally, the com-
munication tasks and computation tasks involved 
in the above process are conducted separately. 
This isolated design results in excessive resource 
consumption due to the fact that redundancy 
retained among the devices makes it unneces-
sary to losslessly transmit all the collected data for 
obtaining the intended results.

As one promising evolution direction, the 
integration of communication and computation 
over NOMA can break this bottleneck. Due to its 
superposition nature, NOMA inherently accom-
plishes analog computation while transmitting. 
With the help of NOMA, computation over multi-
ple access channels (CoMAC) is enabled by com-
puting a designated function while transmitting. 
Communication-theoretic tools have been exploit-
ed to achieve simple computation tasks, such as 
distributed addition, using hand-crafted design of 
the transmitter and receiver. To further accom-
plish complicated computation tasks while resist-
ing the additional noise introduced by wireless 
channels, joint optimization of the non-orthogonal 
communication and the distributed neural trans-
ceivers shall be accomplished by deep learning 
toward better end-to-end computation accuracy.

One such example is the wireless backhaul 
design for cell-free multiple-input multiple-out-
put (CF-MIMO) system [14]. First, NOMA 
is deployed at backhaul for the access points 
(APs) to reduce the bandwidth. Then the end-
to-end design of the transceivers at the APs and 
the CPU is conducted using deep auto-encoder 
where NOMA-based backhaul is integrated as 
a neural computing layer, as illustrated in Fig. 
5. Using deep learning in this case significantly 
outperforms the conventional CoMAC schemes 
with respect to computation accuracy [14]. In 
the future, much more complicated human-level 
tasks that involve massive mMTC devices are 
expected to be accommodated by integrat-
ing the communication and computation via 
deep-learning-enhanced NOMA.

excAvAtIon And exploItAtIon of user ActIvIty 
InforMAtIon for trAnsceIver desIgn

The modeling of mMTC diff ers from convention-
al human-centric communications in a way that 
mMTC serves massive autonomous devices with 
small and sporadic traffi  c [3]. As such, grant-free 
access has been investigated in mMTC to reduce 
the scheduling overhead, while NOMA technol-
ogy is simultaneously exploited to resolve colli-
sions introduced by statistical multiplexing. The 
scheduling-based NOMA schemes can be directly 
deployed for grant-free NOMA. However, these 
schemes ignore the sparse and non-uniform traffi  c 
patterns of the mMTC devices, which results in 
overestimated IUI and thus cannot fully exploit 
the degree of freedom (DoF) of the system [10].

FIGURE 4. Performance evaluations of deep-learning-enhanced NOMA 
schemes with typical overloading of 150 percent.
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Deep learning provides an intelligent approach 
to exploit the traffic patterns of different mMTC 
services. With the strong data mining capability, 
DNN can excavate the user activation profiles, 
such as the activation profiles, out of the data 
streams. The extracted activation probabilities of 
the devices can be further incorporated in the 
DNN-based NOMA encoder and decoder for 
joint transceiver optimization.

spArse ActIvAtIon profIle predIctIon
The transmit data streams of the mMTC devices 
are generated according to their activation pat-
terns. Reversely, the diversified activation profiles 
of the devices can also be anticipated from the 
historical received data. Conventionally, the sta-
tistical analysis methods for time series, such as 
autoregressive, moving average, and autoregres-
sive integrated moving average model schemes, 
have been developed to predict the upcoming 
data based on history. However, sophisticated fea-
ture extraction methods should first be designed 
to convert the physical-layer waveforms to the 
upper-layer user behaviors, after which the above 
prediction schemes can be employed. Informa-
tion loss is likely to happen in this procedure. 
Moreover, the non-stationary property of the acti-
vation profiles further requires efficient adaptation 
between long-term and short-term dependencies. 
Therefore, intelligent methods should be devel-
oped to extract activation profile prediction out of 
raw data directly.

DNN with recurrent structures (i.e., recurrent 
neural network, RNN) can deal with time series 
data to automatically extract high-level represen-
tations. The fact that RNN has internal memo-
ry comes from the recurrent architecture, which 
takes the previously generated hidden states as 
the input along with newly received data. As a 
powerful variant of RNN, long short-term memory 
(LSTM) designs mechanisms to learn how and 
what to remember over a long time period. This 
is especially effective in predicting the activation 
profiles in long and unknown time periods [13], 
which can be exploited for grant-free NOMA 
transceiver optimization.

spArsIty-AwAre trAnsceIver optIMIzAtIon
Multiuser Detection Based on Prior Informa-

tion: At the receiver of grant-free NOMA, both 
the device activity and the data symbol should be 
estimated by the MUD. The multi-task structure of 
DeepNOMA is inherently compatible with grant-
free NOMA, where the device activity detection 
can be regarded as an additional task [8]. Since 
the inactive device can be equivalently regard-
ed as transmitting a zero symbol, the hidden lay-
ers trained for the symbol detection task can be 
reused in the activity detection task. The activity 
estimation is a binary decision;, thus, cross-entro-
py loss can be used. The prior information about 
the activation profiles of the devices incorporates 
a confidence penalty in the cross-entropy loss, 
which urges the statistical output distributions to 
exactly follow the prior distributions [9]. To jointly 
optimize these tasks, an additional activity estima-
tion loss should be added on the symbol recov-
ery loss with a weight coefficient. As a result, the 
DNN-based scheme demonstrates excellent per-
formance with respect to the area under curve 

receiver operating characteristic (AUC-ROC) 
curve of activity detection.

It is worthwhile to mention that, in addition to 
the DNN-based MUDs, the conventional counter-
parts can also benefit from the sparse activation 
profiles. A modified orthogonal matching pursuit 
(OMP) algorithm is proposed in [13] to exploit 
the activation prediction results for joint activity 
and symbol detection. The resulting symbol error 
rate can be reduced by one order of magnitude 
compared to the conventional OMP methods.

Encoder Design Based on Activation Proba-
bilities: As initial research, [10] examines the case 
where NOMA transmitters hold different activa-
tion probability. It is observed that the NOMA 
signatures derived by the end-to-end training can 
perfectly leverage the heterogeneous activation 
profiles of the users; that is, the signatures cor-
responding to the devices with high activation 
probability are more likely to have low cross-cor-
relations. This design achieves significant per-
formance gain compared to the conventional 
grant-free NOMA methods when the users hold 
non-identical activation profiles. This result indi-
cates that deep learning can properly exploit the 
heterogeneous activation profiles of devices to 
design NOMA encoders [10].

conclusIons And future dIrectIons
Deep learning has provided the unified signal pro-
cessing architecture for end-to-end transceiver 
optimization for NOMA in mMTC scenarios. In 
offline training, sophisticated data and model-driv-
en designs of deep-learning-enhanced NOMA 
have been developed. Complicated optimiza-
tions, such as the exploitation of user activation 
profiles and the integration of communication 
and computation, have also been achieved via 
DNN. Deep-learning-enhanced NOMA normally 
outperforms conventional methods with respect 

FIGURE 5. Integration of communication and computation in non-orthogonal 
wireless backhaul via deep learning [14].
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to both transmission accuracy and computational 
complexity. 

Nonetheless, with the diversified connectivity 
in future mMTC, NOMA technology still faces 
the major challenges of heterogeneous quality of 
service (QoS) requirements, dynamic system con-
figurations, nonlinear propagation environments, 
and so on. Research efforts shall be made in the 
future to bring more intelligence, flexibility, and 
adaptability to NOMA technology. In the follow-
ing, we identify some promising future directions 
and initial thoughts of deep-learning-enhanced 
NOMA, including cross-layer optimization, recon-
figurable design, and online adaption.

Qos-AwAre cross-lAyer optIMIzAtIon for noMA
Due to the limited transmission resources in 
future mMTC scenarios, meeting different QoS 
requirements, including energy efficiency, is chal-
lenging. The layered optimization methods limit 
the further enhancement of NOMA performanc-
es. Therefore, it is necessary to design proper 
cross-layer technologies to guarantee diversified 
QoS of NOMA users. However, facing the com-
plex relationship between different protocol layers 
and the highly dynamic environment of a NOMA 
system, the cross-layer optimization problem is 
usually nontrivial to solve. The end-to-end process-
ing ability of DNN should be further studied to 
enable personalized QoS via effective cross-layer 
optimization.}

reconfIgurAble dnn structure for noMA
In an on-site NOMA system, configurations such 
as the number of users may dynamically change. 
However, a vanilla DNN-based MUD only has 
fixed output dimensions, and any number of 
users larger than offline training cannot be sup-
ported online. The major challenge is to design 
DNN with a plug-and-play structure to match 
the system configurations. Observing the factor 
graph representation of NOMA, we can regard 
the NOMA system as multiple mutually interfered 
single-user transmissions and design the DNN 
structure accordingly. Figure 6 illustrates an ini-
tial design of the reconfigurable deep learning 
framework. This framework is a combination of 
several single-user detection branches, which are 
mutually connected via specific modules to trans-
fer extrinsic messages. This structure allows the 
dynamic recombination of the branches during 
online deployment.

MetA-leArnIng-AIded noMA onlIne AdAptAtIon

mMTC devices with low-cost power amplifiers 
may introduce unexpected distortion, which 
leads to nonlinear propagation during online 
deployment. This mismatch greatly degrades the 
performance of deep-learning-enhanced physi-
cal-layer technologies. Meta-learning, also known 
as learning to learn, aims at acquiring an induc-
tive bias that is suitable for the entire class of the 
system configurations of interest [15]. Howev-
er, the online adaptation can be very challenging 
for NOMA due to the overlapped multiple signal 
streams. Based on the above reconfigurable DNN 
structure, one initial thought is to first decouple 
the system into multiple single-user subsystems, 
update each subsystem with meta-learning, and 
finally re-organize these subsystems as a whole. 
We show the performance of the proposed 
design in Fig. 4b. Compared to the convention-
al minimum mean square error detector without 
adaption, a DNN detector with online learning 
can quickly adapt to the changing transmission 
environment.
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