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Abstract
Many state-of-the-art techniques are leveraged 

to improve spectral efficiency, of which cognitive 
radio and multiple access are the most promising 
ones. In cognitive radio communications, spec-
trum sensing is the most fundamental part, whose 
accuracy has a significant impact on spectrum uti-
lization. Furthermore, due to the complex radio 
environment, multiple-user CSS has been proposed 
as a refined solution. NOMA, as an essential tech-
nique in 5G, holds great promise in improving 
spectral efficiency and carrying massive connectiv-
ity. In this article, we propose a novel CSS frame-
work for NOMA to further improve the spectral 
efficiency. Considering the complicated physical 
layer implementations of NOMA, we introduce 
an AI based solution to cooperatively sense the 
spectrum with a nice accuracy rate and acceptable 
complexity. Numerical results validate the effective-
ness of our proposed solution.

Introduction
With the emerging era of Internet of everything, 
a series of novel applications, including but not 
limited to autonomous driving, smart city and 
augmented reality, have been posing unprece-
dented requirements for bandwidth, latency and 
connectivity in wireless networks. More than 50 
billion Internet of Things devices will be connect-
ed to the Internet by 2020 [1], so the scarcity of 
spectrum resources is becoming more and more 
prominent. How to improve spectral efficiency 
to meet such requirements has been intensively 
investigated by the academic and industrial com-
munities.

On the one hand, a variety of multiple access 
techniques have been designed as cellular net-
works evolve. Previous multiple access techniques, 
according to radio resource allocation criteria, 
can be mainly divided into orthogonal multiple 
access (OMA) in conventional cellular networks 
and NOMA in 5G. The OMA is implemented by 
assigning orthogonal resources in frequency, time 
or code domain to different users, in which all 
users can simultaneously access the cellular infra-
structures without multi-user interference. Instead, 
NOMA allows the same resources to carry differ-
ent users at the same time, and shows excellent 
performances on both spectral efficiency and mas-
sive connectivity [2], which makes it an essential 
access technology in 5G [3]. However, in either 

case, users are in a relatively passive state, and base 
stations (BSs) play an important role in resource 
allocation which may limit the reuse of precious 
spectrum.

On the other hand, the Federal Communica-
tions Commission has pointed out that despite 
the exponential growth in demand for radio spec-
trum, the vast majority of licensed spectrum is 
underutilized. Therefore, cognitive radio commu-
nication has been accordingly proposed to further 
boost spectral efficiency, where the users may 
have more initiatives. In cognitive radio communi-
cation, each user is endowed with cognitive abil-
ity to detect the spectral holes by perceiving the 
surrounding radio environment, and the ability to 
access the idle licensed frequency band oppor-
tunistically. Generally, cognitive communication 
includes two steps, that is, continuous spectrum 
sensing and dynamic spectrum access, while the 
former is the premise of the latter [4]. Accurate 
sensing is able to help users correctly occupy the 
spectral holes, otherwise low spectral efficiency or 
multi-user interference will appear. Hence, how 
to accurately and effectively detect the channel 
states has attracted much research effort. Further-
more, due to the complex shadowing and fading 
of radio environments, sensing by a single user 
becomes unreliable. Thus, CSS is proposed to 
tackle this challenge, which utilizes multiple users 
to cooperatively perceive the channel states and 
comprehensively make decisions [5].

In light of the significant effects of NOMA and 
CSS on improving spectral efficiency, we propose 
a novel CSS framework for NOMA to further 
boost spectrum utilization. Since the complicated 
physical layer implementation of NOMA makes 
available CSS solutions unsuitable (if not impossi-
ble) to sense the channel states, AI is introduced 
in our framework to achieve higher sensing accu-
racy with much lower computational complexity. 
In particular, we present a new CSS framework for 
NOMA as well as an efficient AI-enhanced solu-
tion, being able to effectively address the complex 
descriptions and implementations of NOMA.

The rest of this article is organized as follows. 
First, the preliminaries about NOMA, spectrum 
sensing and AI are introduced. Next, we present 
the framework of CSS for NOMA, and develop the 
AI-enhanced solution after analyzing the detailed 
technical challenges. Then we present extensive 
numerical results for performance illustration. Final-
ly, we conclude the article.
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Preliminaries
Advanced Radio Resource Management in  

Wireless Communications
Multiple Access in Cellular Networks: Multiple 
access enables several users to share available 
resources in the most effective manner. From the 
historical view, orthogonality is an important crite-
rion to efficiently share available spectral resourc-
es. Non-orthogonality, which is another novel 
criterion in 5G networks, is also showing its pow-
erful ability in improving spectral efficiency and 
massive connectivity by serving multiple users in 
the same time-frequency resource [2]. 

The mainstream of NOMA includes power-do-
main NOMA and code-domain NOMA. The first 
one serves multiple users which employ different 
transmission powers in the same time-frequency 
resource, while the second designs a sparse code-
book for each user whose data is then mapped 
accordingly based on the code-book. As NOMA 
enables users to transmit in a superimposed man-
ner, it can provide a much larger sum rate than tra-
ditional OMA [6], especially when applied together 
with multiple-input multiple-output communication 
systems [7]. 

There are already some pioneering works. As 
an important variation of power-domain NOMA, 
a scheme combining power-domain NOMA with 
cognitive radio was proposed in [6] where NOMA 
was treated as a special case of cognitive radio, 
and a power allocation strategy was designed to 
meet the predefined quality of service require-
ments. Closed-form analytical results were provided 
to prove the effectiveness of cooperative trans-
mission in down-link NOMA [8], and the authors 
showed that better performance can be obtained 
with more relaying users. 

Spectrum Sensing in Cognitive Radio Com-
munications: In cognitive radio communications, a 
primary user (PU) possesses a high priority, while a 
secondary user (SU) who opportunistically access-
es channel resources through spectrum sensing 
possesses a low priority. Compared with non-coop-
erative spectrum sensing, CSS is able to enhance 
the sensing performance, in which SUs collaborate 
with each other to sense spectrum and find spec-
tral holes, especially in complex shadowing and 
fading radio environments. 

There are different kinds of detection meth-
ods developed for CSS, such as energy detec-
tion, matched filter detection, and cyclostationary 
detection. To be specific, an optimally normalized 
energy detection-based CSS scheme was pro-
posed in [9], and first-order correlation of the per-
ceived signal samples was introduced in [10] to 
improve the detection performance. In compari-
son with mainstream energy detection, matched 
filter detection requires more prior knowledge, 
while cyclostationary detection has the highest 
sensing accuracy and the greatest computational 
complexity of the three. 

As for CSS fusion schemes, there are hard and 
soft fusion schemes depending on whether a sin-
gle SU makes a decision. In hard fusion schemes, 
which usually apply a voting based fusion strate-
gy, each SU independently makes a decision on 
channel states according to the perceived signal. 
Each SU then transmits the decision to a fusion 

center, and the fusion center makes a final deci-
sion by voting. Opposite to hard fusion, each SU 
is only responsible for perceiving signal which 
needs to be transmitted to the fusion center in 
soft fusion schemes, then the fusion center makes 
a final decision. Hard and a soft fusion schemes 
based on hidden bivariate Markov models were 
proposed in [5], and a linear soft fusion strate-
gy with a heuristic optimization algorithm based 
on modified deflection coefficient was proposed 
in [4]. Generally, soft fusion although with lower 
computation efficiency, has higher sensing accura-
cy than hard fusion. In addition, from the perspec-
tive of energy consumption, soft fusion is more 
suitable than hard fusion when performing envi-
ronmental monitoring [11].

Note that due to the complexity of physical 
layer implementation in NOMA, such as complex 
receiver and complicated power allocation, the 
applications of NOMA are limited. Many previ-
ous approaches have considered the problem of 
CSS for traditional OMA. In this article, we pro-
pose a novel CSS framework for NOMA to fur-
ther improve spectral efficiency, which to our best 
knowledge has not been proposed yet. AI technol-
ogy is applied to tackle these challenges in com-
plex physical layer of NOMA.

Artificial Intelligence
Recently, AI has been in the spotlight. AI-en-
hanced applications, such as autonomous 
driving, face recognition, natural language pro-
cessing, and intelligent medicine, have sprung 
up. AI can be roughly divided into machine 
learning and deep learning, whose model com-
plexity, model generalization ability, training data 
requirements and training time are totally differ-
ent. By contrast, machine learning requires less 
data and training time than deep learning, but its 
generalization ability is relatively weaker due to 
the naive model.

The AI-enhanced solutions of CSS for OMA 
based on convolutional neural networks [12], 
K-means, Gaussian mixture model and K-near-
est-neighbor [13] were proposed, and great per-
formance improvement has been observed there. 
The authors in [14] provided a support vector 
machine (SVM) based CSS solution, which utilizes 
the user grouping method to reduce coopera-
tion overhead and boost detection performance. 
Meanwhile, the idea of eliminating abnormal 
and interfering data from the overall data is also 
applied in [15].

In light of the complex physical layer of 
NOMA, many simulation optimization problems 
are non-convex and difficult to solve. Therefore, 
deep learning and unsupervised learning have 
been introduced to enhance the performance 
in multi-carrier NOMA and millimeter-wave 
NOMA.

Based on these, AI-enhanced CSS is a prom-
ising solution for less prior information require-
ments and higher sensing accuracy. Although 
deep learning has very good classification ability 
for ultra-high-dimensional models, its computation-
al complexity is extremely high. Accordingly, we 
propose in this article a solution based on directed 
acyclic graph-support vector machine (DAG-SVM) 
with low computational complexity and high sens-
ing accuracy.

Recently, AI has been 
in the spotlight. AI-en-
hanced applications, 
such as autonomous 
driving, face recogni-
tion, natural language 
processing, and intel-
ligent medicine, have 
sprung up. AI can be 
roughly divided into 
machine learning and 
deep learning, whose 
model complexity, 
model generalization 
ability, training data 
requirements and 
training time are totally 
different.
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CSS for NOMA and AI-Enhanced Solution
System Framework

As shown in Fig. 1, we consider an uplink com-
munication of a cognitive radio system, in which 
there exist two PUs and M SUs, denoted by {PU1, 
PU2} and {SU1, SU2 , …, SUM}, respectively. The 
spectrum resources are allocated to the PUs 
according to power domain NOMA, that is, the 
signals of PUs are transmitted simultaneously with 
different transmission powers in the same chan-
nel. Without loss of generality, the PU1 with poor 
channel condition and the PU2 with good chan-
nel condition are assumed in our framework. In 
addition, the PU1 is allocated with high power as 
the strong user and the PU2 is allocated with low 
power as the weak user. Each PU has two states, 
active or idle. Therefore, four channel states can 
be obtained with two PUs, that is, both PUs are 
active or idle, and one is active and the other is 
idle. According to power-domain NOMA, if any 
PU is idle, the channel is available to be reallocat-
ed, otherwise it is not allowed.

The procedures of CSS for NOMA are described 
in Fig. 2. Supposing that the SUi needs to transmit 
signal to a BS. It first sends a request to the fusion 
center for collaborating with the other SUs, then the 
fusion center instructs the other SUs in the cover-
age area to perceive the current radio environment. 
In the second step, each SU sends the perception 
information to the fusion center. At last, the fusion 
center decides the channel states and passes it back 
to SUi. As long as any PU is idle, SUi can access the 
channel and transmit signal by adjusting its own 
parameters (e.g., when PU1 is idle and PU2 is active, 
the SUi will use high power, and transmit signal 
together with PU2). When all PUs are active, SUi will 
retreat for a period before the next perception.

CSS for NOMA
In the proposed framework, we denote by N the 
rate of oversampling the channel. The kth sample of 
the SUi perceived at a time slot can be denoted as

			 

H00 : xi (k) = ni (k)

H01 : xi (k) = Ω2h2,iS2(k)+ ni (k)

H10 : xi (k) = Ω1h1,iS1(k)+ ni (k)

H11 : xi (k) = Ω1h1,iS1(k)+ Ω2h2,iS2(k)+ ni (k)

⎧

⎨

⎪
⎪

⎩

⎪
⎪

,

		  (1)
where H00, H01, H10, H11 denote four possible 
channel states. S and W are the transmitted signals 
and the power coefficients of PUs, respectively. 
We define the additive white Gaussian noise n 
as the first channel noise. Furthermore, the signal 
undergoes transmission of the Rayleigh channel, 
and the channel gain h is assumed to be constant 
in each time slot.

The N samples perceived by SUi at the lth time 
slot are summed to get a statistic ul

i which can be 
obtained by ul

i = SN
k=1|xi(k)|2, i = 1, 2, … , M. Accord-

ing to the central limit theorem, ul
i is approximately 

subject to normal distribution when the sample 
rate N is large enough. Then u l

i will be sent to the 
fusion center through a control channel, and the 
signal from SUi received by the fusion center can 
be represented as yl

i = u l
i + vi. vi is the zero-mean 

Gaussian channel thermal noise with variance d2
i, 

which is defined as the second channel noise. {yl
i}, i 

= 1, 2, … , M from different SUs together constitute 
the training data of the lth time slot. We obtain an 
L  M training data set by collecting over L time 
slots as Y = [Y1, Y2, …, YL]T, where Yl is a column 
vector. Yl = [yl

1, yl
2, …, yl

M]T denotes the training data 
received by the fusion center from all SUs in the lth 
time slot. Finally, the fusion center needs to decide 
in which state the channel is according to the train-
ing data Y. Obviously, the decision progress can 
be formulated as a classification problem. Each 
SU transmits the processed perception signal as 
an input to the fusion center, and then the fusion 
center makes a judgment.

AI-Enhanced Solution
In a traditional OMA mechanism, CSS needs only 
to judge whether the channel is occupied, and 
as long as any user occupies it, other cognitive 
users are not allowed to transmit in this channel. 
However, in advanced NOMA, more than one 
user is allowed to transmit simultaneously in the 
same time-frequency resource, and the cognitive 
user can transmit when any PU is idle. Obviously, 
NOMA can achieve much higher spectral efficien-
cy than conventional OMA, but as the number 
of simultaneous transmission users increases, the 
number of channel states increases exponentially. 
For example, if Q users are allowed to transmit 
together in a channel, there are 2Q different com-
binations of channel states. Thus, compared with 
the OMA mechanism, NOMA poses huge chal-
lenges to CSS. 

In addition, when a traditional statistical model 
is applied to solve the problem of CSS for NOMA, 
the joint probability distribution function of the 
hypothesis test will become extremely complicat-
ed, and the computational complexity will also 
become tremendously high. Therefore, we need 
to consider more efficient techniques to tackle 
these challenges with acceptable sensing accura-
cy. As an excellent supervised learning algorithm, 
SVM shows good generalization ability and pre-
diction performance on solving complex non-lin-

FIGURE 1. The framework of cooperative spectrum sensing for NOMA.
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ear problems with small sample data as well as 
high dimensionality. The original data is mapped 
to high-dimensional space from low-dimension-
al space through kernel function to make a linear 
inseparable problem become linear separable. It 
will greatly improve the prediction performance. 
At the same time, since SVM only uses support 
vectors to make a prediction, it can tremendous-
ly reduce the complexity of prediction. However, 
SVM is a typical binary classifier which is not appli-
cable to the multi-classification problem, so a vari-
ation of SVM named DAG-SVM is applied in our 
proposed solution.

DAG-SVM is a multi-classifier and one-versus-
one based. For a P-classification problem, DAG-
SVM constructs P(P – 1)/2 classifiers, and each 
classifier can distinguish a pair of classes from the P 
classes. The training data set is divided into P data 
subsets according to the label, and data subsets 
are combined in pairs to train these classifiers as 
shown in Fig. 3a. When a SU needs to sense spec-
trum, the fusion center judges along a branch of 
the model to obtain the final decision on CSS as 
shown in Fig. 3b. Therefore, DAG-SVM is able to 
achieve accurate CSS with acceptable computa-
tional complexity for NOMA.

According to the analysis above, Fig. 3 shows 
a four-category sensing model of CSS for NOMA 
when there are two PUs using one channel. The 
training stage of classifiers is illustrated in Fig. 3a. 
At the beginning, since the channel has four states, 
the training data Y is divided into four subsets, 
namely Y00, Y01, Y10 and Y11. We label the sub-
sets according to the energy of perceived signals 
in subscripts, and the subscripts also denote the 

states of the channel. Afterwards, any pair of sub-
sets are combined to train a classifier by using SVM 
with radial basis kernel function (RBF). We adopt 
the grid search method to search for the optimal 
parameters (i.e., punishment coefficient C and RBF 
parameter g) for each classifier. Fig. 3b shows the 
prediction stage based on DAG-SVM. When an 
unlabeled data needs to be predicted, the model 
first uses the classifier C00-11 at the root node of 
the decision model to distinguish it. The classifi-
cation results (H00 or H11) reveal the closeness 
between the data and the candidate prediction 
results ({H00, H01, H10} or {H01, H10, H11}). The 
final decision is obtained by the classifiers along 
the selected branch.

From the procedure we can see that if the 
previous classifier is misclassified, the follow-up 
classifiers cannot correct the error since the true 
class does not appear in latter classifiers. Thus, we 
always select the classifier with the largest space in 
the remaining classes as the current node. Through 
this demonstration, when the number of classes is 
P, only P – 1 judgments are needed to obtain the 
final decision result, so the effectiveness of CSS can 
be guaranteed.

Numerical Results
In this section, we conduct intensive performance 
evaluation for the proposed DAG-SVM based 
solution. In particular, we investigate the impacts 
of the number of SUs, training data volume and 
power allocation, on the sensing accuracy. The 
variances of the first channel noise are randomly 
assigned, while the second channel noise varianc-
es are set as di

2 = 0.5, i = 1, 2, …, M. The training 

FIGURE 2. The procedures of CSS for NOMA: a) The SUi who needs to transmit signal sends a request to 
fusion center, and the fusion center instructs all SUs in its coverage area to assist the SUi; b) Each SU per-
ceives current radio environment and sends the results to the fusion center; c) The fusion center makes a 
decision and informs the SUi, then the SUi decides to transmit or not.

(a) The first step (b) The second step (c) The third step 

BS Fusion center SUi with signal to transmit

Request Sensing information Decision Transmit signal or not

PU SU

BS-to-PU

FIGURE 3. A four-category sensing model based on DAG-SVM.
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In a traditional OMA 
mechanism, CSS needs 
only to judge whether 
the channel is occu-
pied, and as long as 
any user occupies it, 
other cognitive users 
are not allowed to 
transmit in this channel. 
However, in advanced 
NOMA, more than 
one user is allowed to 
transmit simultaneously 
in the same time-fre-
quency resource, and 
the cognitive user can 
transmit when any  
PU is idle.
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and test data are obtained according to the sys-
tem model. 40,000 pieces of data are used to test 
the sensing accuracy of the proposed solution. 
The simulation is realized by MATLAB R2018b 
version and executed on a workstation with an 
Intel Pentium CPU and 8 GB RAM.

Sensing Accuracy vs. Number of SUs
The DAG-SVM model is trained with configura-
tions of four different numbers of SUs. In this sim-
ulation, the power coefficients W1 and W2 are set 
to be 0.7 and 0.3, respectively. Sensing accuracy 
under different numbers of SUs is shown in Fig. 
4, where the training data size is selected as 400. 
The sensing accuracy increases monotonically 
with the number of SUs, reaching 97.10 percent 
when M = 20. It conforms to a common intuition 
that our DAG-SVM model can solve the CSS 
problem for NOMA with acceptable accuracy 
when the number of SUs is sufficiently large. Note 
further that the model efficiency actually closely 
relates to the size of the training data volume, as 
illustrated later.

Sensing Accuracy vs. Training Data Volume
The relationship between sensing accuracy and 
training data volume is illustrated in Fig. 5, where 
the power coefficients W1 and W2 are set to be 0.7 
and 0.3, respectively. It is interesting to observe 
that for the setting of M = 20, the sensing accuracy 
drops significantly when the size of the training 
data is less than 200. This is because as the number 
of SUs increases, more training data is required to 
find the separation plane and ensure the sensing 
accuracy. The lack of training data leads to a per-
formance degradation, namely the “under-fitting.” 
Such observation suggests that given the value of 
M, that is, the number of SUs, a certain amount of 
training data is required in order for the DAG-SVM 
to get satisfactory sensing accuracy.

Furthermore, we can see from Fig. 5 that for all 
four settings of M, the convergent sensing accura-
cy will be obtained when the training data size is 
more than 400. In comparison with the formida-
ble amount of training data size required for deep 
learning, our DAG-SVM model is able to obtain 
nice sensing accuracy even with a small size of 
training data.

Sensing Accuracy vs. Power Allocation
The influences of power allocation on sensing 
accuracy are shown in Fig. 6. The power coeffi-
cient of PU2 satisfies W2 = 1 – W1. From the line 
graph (upper) of Fig. 6, it can be clearly observed 
that as the power coefficient W1 of PU1 increases, 
the overall sensing accuracy will rise first and then 
decrease. The bar chart (bottom) of Fig. 6 reveals 
the reasons for the changes of overall sensing 
accuracy. When the power coefficients change, 
among the six sub-classifiers, the sensing accuracy 
of sub-classifiers C00-01, C01-10, C10-11 will be sig-
nificantly affected.

Specifically, for sub-classifiers C00-01, C10-11, as 
W1 increases, the signal energy gap between the 
two channel states becomes smaller, resulting in 
a lower sensing accuracy for either sub-classifier. 
However, for sub-classifier C01-10, the perceived 
energy difference of the two channel states, name-
ly H01 and H10, becomes greater as W1 rises, conse-
quently its sensing accuracy increases.

Discussions
In this section, we will discuss the overhead, 
effectiveness, portability and scalability of the pro-
posed solution.

Overhead: In cognitive radio networks, wheth-
er the fusion center is an independent component 
or one of the SUs plays the role of fusion center, 
CSS requires SUs to communicate with the fusion 
center. Compared with cellular networks, cognitive 
radio networks add the overhead between SUs 
and the fusion center, but the SUs no longer need 
to request the BS to allocate resources for them, 
thus reducing the overhead between the SUs and 
the BS. On the other hand, both CSS for OMA and 
CSS for NOMA require SUs to communicate with 
the fusion center, but the latter can achieve higher 
spectral efficiency.

FIGURE 4. Sensing accuracy versus the number of SUs.
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FIGURE 5. Sensing accuracy versus training data volume with different numbers 
of SUs.
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Effectiveness: The effectiveness of the DAG-
SVM based solution can be corroborated with 
the computational complexity in the training 
stage and the computation efficiency in the pre-
diction stage. In the training stage, it is difficult 
to accurately describe the computational com-
plexity due to the random learning process of 
the AI-enhanced solution, so the data volume 
required for the training model is used to repre-
sent the computational complexity. Compared 
to deep learning models which typically require 
large amounts of data, the proposed DAG-SVM 
based model requires only a few hundred pieces 
of data to be well trained. Thus, a fusion cen-
ter with limited capability is fully capable of the 
training task. As for the prediction stage, this 
model only adopts support vectors to make a 
judgment, and it takes no more than 1ms on our 
experiment platform. Considering the training 
data volume and decision time, our proposed 
solution holds great promise in application 
toward CSS for NOMA. 

Portability and Scalability: In this article, we 
only focus on a simple system framework with two 
PUs and a single channel. Through the above dis-

cussions of effectiveness in the training stage and 
the prediction stage, we can easily extend the prob-
lem to a multiple channels scenario and multiple 
PUs scenario in the practical NOMA framework, 
by repeating our proposed solution in each chan-
nel and extending more possible channel states, 
respectively. Furthermore, the proposed solution 
can also be applied to ad-hoc wireless networks 
inspired by cognitive radio, where each SU can be 
used as a fusion center. 

Conclusions
As the first attempt, we have presented a new 
framework for achieving CSS in NOMA, and 
proposed a DAG-SVM based solution. As validat-
ed by extensive numerical results, our solution is 
able to achieve very efficient and accurate spec-
trum sensing by requiring only several hundreds 
of training data and less than 1ms prediction 
time, which possess obvious advantages over tra-
ditional CSS schemes and deep learning based 
solutions. Interestingly, we find that there exists 
an optimal setting of power allocation between 
the two PUs, at which the maximum sensing 
accuracy rate is achieved, for all different settings 
of M, that is, the number of SUs.
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