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e Presentation outline oA

m Machine learning and communications

m Signal Processing and Machine Learning over networks
» The cases of federated and fully distributed learning

m Reconfigurable intelligent surfaces

m Coordinated MultiPoint transmissions



e Machine learning and communications (1/6) =

——

m Machine learning (ML) 1s penetrating every facet of our lives.

B This has been enabled due to many recent advances in processing
speed, data acquisition, and storage

m Wireless communications 1s another success story — ubiquitous

in our lives, from handheld devices to wearables, smart homes,
and automobiles.

m In recent years, there 1s intensive research activity in exploiting
ML tools for various wireless communication problems.

m Moreover, designing physical layer techniques to enable
distributed ML at the wireless network edge are also currently
being intensively studied.

» This further emphasizes the need to understand and connect ML with
fundamental concepts in wireless communications 3



e Machine learning for communications (2/6)

m Moreover, modern wireless communication systems are getting
more complicated. For example, they will support (massive)
machine-type transmissions with a large number of participating
devices

m This scenario raises several challenges like communication
overheads, scalability and latency 1ssues as well as privacy
considerations

m Signal processing and machine learning (SP&ML) 1s “moving”
towards the edge of the network (Edge-SP&ML) 1n distributed
architectures to address these challenges

m A combined expertise at the intersection of signal processing,
machine learning and wireless communications 1s an enabler to
effectively address many of the challenges in Edge-SP&ML 4



e Machine learning for communications (3/6)

m The conventional approach for designing wireless
communications systems, 1s model-based

m The transmitter and the receiver follow a modular design

m At the TX side: source and channel coders, modulator,
beamformer, etc.

m At the RX side: corresponding equalizers, decoders, etc.

m There is a channel model that is adopted, impacting the
design of signal processing algorithms at the PHY

m Each module (block) of the TX/RX uses the following
methodology for describing its functionality (captured by f(-))

Mathematical
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e Machine learning for communications (4/6)

m The ML approach for designing wireless communications
systems, 1s data-driven and 1s utilized via the following lines
B The functionality of a particular module 1s captured by an ML model
(e.g., CNN, LSTM, etc.) that approximates f(-)
m A series of modules or the whole TX-Channel-RX chain is modelled by
an ML model
m It requires (as expected) a rich and representative dataset of the
underlying communication scenario

m It drops assumptions and captures complicated aspects of the
system that are not easily (or cannot be) modelled

DNN
- Learn optimal output directly from input data




e Machine learning for communications (5/6)

m As an example, let us see the problem of deep-learning-aided
coordinated beamforming

m Multiple Base Stations (BS) align their transmissions for
serving a particular user

m Conventionally, this can be accomplished as

m The user transmits pilot signals and the BSs estimate the
involved channels

m This information 1s used either individually or

collaboratively to select appropriate beamforming vectors for
ecach BS

m Increased overhead during transmission especially when
multiple antennas are employed.



e Machine learning for communications (6/6)

m For the same problem, using deep learning models, the
following steps can be employed
B Before rolling out the wireless communication system, model training 1s
performed to get the desired models

m The models select the appropriate beamforming vectors directly from
the transmitted signals in a blind manner without a-prior1 known
information

m The communication overhead 1s minimized; however, it 1s

difficult to capture a representative dataset for training purposes

m It has been demonstrated that novel CNN and LSTM-based
models may exploit inherent time and frequency correlations of
OFDM signals (96% of peak performance achieved with only
18% of training data for the best model)!

'I. Nikas, C. Mavrokefalidis, K. Berberidis, “Efficient Deep Model Training for Coordinated
Beam-Forming in mmWave Communications”, in proc. of INSSIP’22
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e SP&ML over networks - Motivation (1/10) iy
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m [n many cases, immense amounts of data are available, but at
different spatial locations. Exchanging data can be prohibitive
because of

m [nefficient communication resources
m Privacy considerations

m OR different nodes (spread in space) observe the same
phenomenon

m OR they observe different views of the same phenomenon
m OR several subsets of nodes observe different phenomena

m We would like to establish a cooperation between the nodes
so as to Estimate/Detect/Learn using all that data
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e SP&ML over networks - Formulation (2/10) = 1
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m [ ct us assume that there are K agents with sensing, processing,
and communication capabilities and a common task.

m The agents may or may not collaborate with each other. In the
former case, there can be an underlying communication topology
and let N;, denote the neighborhood of agent k

m All agents aim to estimate / detect / learn a common unknown
variable w using a-priori known information (e.g., statistical
models in the form of probability density functions, available
local data, etc.)

10
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e SP&ML over networks - Formulation (3/10)
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m This 1s accomplished by minimizing a local cost-function f; (w)

m This cost-function can be (non)-convex

m The minimization problem may incorporate constraints (in
the form of regularizers or otherwise)

m In our discussion, the so-called global cost function is also
relevant, denoted as

w? = argmin,, ka (w)
K

11



e
e SP&ML over networks - Examples (4/10) =

m In automotive domain, connected and autonomous vehicles

may collaborate
m They employ cameras, LIDAR, GPS and other sensors

m They aim for, e.g., (a) vehicle and pedestrian recognition and (b)
improving they localization information (positioning of themselves and
the surrounding vehicles)

m They use, for example, data-driven models (e.g., CNN-based,
Transformer-based, etc.)

m In wireless communications, devices may collaborate

m They sense for transmitting signals in spectral bands of interest

m They aim for detecting spectral gaps to utilize them for their
transmissions (Cognitive Radio Networks)

m They use detection theory (if signal models are available) or data-driven

models (e.g., CNNs)
12



e
e SP&ML over networks - Examples (5/10) =

m In the environmental domain, devices 1n an IoT network may
collaborate towards a common task:

m The devices sense the temperature and / or other environmental
quantitates in an area of interest

m They aim for forecasting future values in the short or long term
m To this end, model-based linear predictors or data-driven models can be
used (e.g., LSTMs)

m In smart-grids, end-users (namely, consumers) may collaborate:

m They employ smart meters for measuring the power consumptions of
houses / devices

m The aim 1s to, e.g., forecast future consumption requirements for driving

demand-response services or employ energy disaggregation for extracting
consumption information of individual devices

m To this end, again data-driven models can be learned and employed
(e.g., dictionaries per device, LSTMs, etc.). 13



SP&ML over networks - Topologies (6/10) (1

Non-cooperative Centralized or parallel Federated Networked or decentralized

m In non-cooperative topologies, each agent operates individually

m In centralized or parallel topologies or federated, local processing 1s
employed by agents, while sending only local inferences to the fusion
center C

m In networked or decentralized topologies, all participating entities are
peers and collaborate for a common task

Wlaski et al., “Networked Signal and Information Processing: Learning by multiagent systems”, IEEE Signal
Processing Magazine, 2023 14
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e SP&ML over networks —
The non-cooperative case (7/10)

@ m Here, each agent operates 1n a stand-alone
@> fashion and solves a minimization problem with
respect to its local cost-function f; (w) using,
2 ¢.g., gradient descent:

e @

@
@&
®° @
® o
Non-cooperative Wieit1 = Wiei = ,quk (Wk’i)

m In case, the true gradient 1s not known, the estimation 1s used. In this case,

the stochastic gradient descent iterations are employed.

m In the non-cooperative case, common knowledge cannot be exploited,

and, 1n case, the local available dataset is not large enough, the minimization

might lead to a poorly performing data-driven model.

Wlaski et al., “Networked Signal and Information Processing: Learning by multiagent systems”, IEEE Signal
Processing Magazine, 2023 15



SP&ML over networks —
The centralized / federated case (8/10)

m Here, the minimization 1s performed following
a two-step iterative procedure in order to
guarantee a consensus among the agents.

m (Local step) In the first step, each agent
performs local processing and forwards the
—@ results of the operation to a fusion center.

Lae

Centralized or parallel Federated m For example, stochastic gradient descent 1s

used
Wi ir1 = Wi — 1V fi(Wii)

m (Consensus step) In the second step, the fusion center aggregates the
received results, namely, the w’s using, for example, a mean rule, to get

the new global model:
K
1
Wit1 = % z Wi,i
k=1

16



e SP&ML over networks —
The fully distributed case (9/10)

s/

Fusion Center

m Transmitting all data to a single location is costly

m Processing all data by a single processor 1s impractical

m Individual agents may not want to share sensitive/confidential local data

17



e SP&ML over networks —
The fully distributed case (10/10)

m [Incremental:
m Cyclic structure, each node knows its
upstream and downstream neighbor
m Each note sends its estimate to one neighbor
m NP-hard problem

m [t may converge to the centralized solution

m Diffusion: Q
m Each node communicates with (all) its neighbors
m Communications cost 1s higher / More data to process
m May even outperform the centralized solution

m Higher reliability

18



Reconfigurable intelligent surfaces (1/3)

m Current wireless communication system designers focus their
efforts on the functionality of the TX and RX devices

m The wireless channel 1s uncontrollable and should be
considered for efficient TX/RX operation using appropriate
models, acquiring each impulse response, etc.

RX functions (e.g.,
channel estimation,
equalization,
detection, etc.)

TX Functions (e.g.,
modulation,

beamforming, etc.)

.

Given by nature. Something to be dealt

with by the TX /RX functionalities
19



e Reconfigurable intelligent surfaces (2/3)

m The designers of future wireless communication systems will
be able to also control the wireless channels!!!

m The smart radio environment 1s currently under study

m A smart radio environment 1s a wireless environment that 1s
turned into a smart reconfigurable space and that plays an active
role 1n transferring and processing information

B Namely, the wireless environment itself 1s turned into a software-

reconfigurable entity

m [ts operation 1s optimized to enable uninterrupted connectivity, quality
of service guarantee, etc.

20




Reconfigurable intelligent surfaces (3/3)

m An enabler for smart radio environments 1s the so-called
Reconfigurable Intelligent Surface (RIS)

m RIS can be considered as an array of reconfigurable elements

m Passive elements can reflect the incident signal with an appropriately
controllable phase shift to coherently add at RX

m Active elements can also amplify the reflected signals via amplifiers so
as to compensate for the large path loss of RIS-aided links,

m RIS may achieve

high array gain, low cost, and

low power consumption,

high spectral efficiency

21



Coordinated MultiPoint transmissions (1/3)

m Coordinated Multi-Point (CoMP) transmissions enhance
throughput and coverage performance by reducing (or managing)
interference, especially for cell-edge users.

m Multiple BS stations either transmit to or receive from a single
device by transmitting collaboratively coherent signals
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e Coordinated MultiPoint transmissions (2/3)

m In CoMP, BSs coordinate using, e.g., fiber links, either via the
central unit or directly 1n a distributed fashion by exchanging CSI
information.

Centralized CoMP Distributed CoMP
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e Coordinated MultiPoint transmissions (3/3)

m As an example, cell-edge throughput improvement via CoMP 1n
small cells is considered!

m To support many users in modern wireless systems, existing and
new technologies need to coexist and share limited resources

m Assuming a group of small cells, clustering of BSs in COMP
employing NOMA and beamforming is considered /

m A coalition formation game 1s :J E, j
formulated for clustering the BSs )
. . RRH 3

for improving cell-edge user »E %
throughput without affecting AW
the remaining users Y

'P Georgakopoulos et al., “Coalition Formation Games for Improved R:%z

Cell-Edge User Service in Downlink NOMA and MU-MIMO Small Cell

Systems”, IEEE Access, 2021 24




