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Presentation outline

 Machine learning and communications

 Signal Processing and Machine Learning over networks

 The cases of federated and fully distributed learning

 Reconfigurable intelligent surfaces 

 Coordinated MultiPoint transmissions 
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Machine learning and communications (1/6)

 Machine learning (ML) is penetrating every facet of our lives.

 This has been enabled due to many recent advances in processing 
speed, data acquisition, and storage 

 Wireless communications is another success story – ubiquitous 
in our lives, from handheld devices to wearables, smart homes, 
and automobiles. 

 In recent years, there is intensive research activity in exploiting 
ML tools for various wireless communication problems.

 Moreover, designing physical layer techniques to enable 
distributed ML at the wireless network edge are also currently 
being intensively studied.

 This further emphasizes the need to understand and connect ML with 
fundamental concepts in wireless communications
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Machine learning for communications (2/6)

 Moreover, modern wireless communication systems are getting 
more complicated. For example, they will support (massive) 
machine-type transmissions with a large number of participating 
devices

 This scenario raises several challenges like communication 
overheads, scalability and latency issues as well as privacy 
considerations

 Signal processing and machine learning (SP&ML) is “moving” 
towards the edge of the network (Edge-SP&ML) in distributed 
architectures to address these challenges

A combined expertise at the intersection of signal processing, 
machine learning and wireless communications is an enabler to 
effectively address many of the challenges in Edge-SP&ML
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Machine learning for communications (3/6)

 The conventional approach for designing wireless 
communications systems, is model-based

 The transmitter and the receiver follow a modular design
At the TX side: source and channel coders, modulator,  
beamformer, etc.

At the RX side: corresponding equalizers, decoders, etc.

 There is a channel model that is adopted, impacting the 
design of signal processing algorithms at the PHY

 Each module (block) of the TX/RX uses the following 
methodology for describing its functionality (captured by )
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Machine learning for communications (4/6)

 The ML approach for designing wireless communications 
systems, is data-driven and is utilized via the following lines

 The functionality of a particular module is captured by an ML model 
(e.g., CNN, LSTM, etc.) that approximates 

A series of modules or the whole TX-Channel-RX chain is modelled by 
an ML model

 It requires (as expected) a rich and representative dataset of the 
underlying communication scenario

 It drops assumptions and captures complicated aspects of the 
system that are not easily (or cannot be) modelled
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Machine learning for communications (5/6)

As an example, let us see the problem of deep-learning-aided 
coordinated beamforming

 Multiple Base Stations (BS) align their transmissions for 
serving a particular user

 Conventionally, this can be accomplished as

 The user transmits pilot signals and the BSs estimate the 
involved channels

 This information is used either individually or 
collaboratively to select appropriate beamforming vectors for 
each BS

 Increased overhead during transmission especially when 
multiple antennas are employed.
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Machine learning for communications (6/6)

 For the same problem, using deep learning models, the 
following steps can be employed

 Before rolling out the wireless communication system, model training is 
performed to get the desired models

 The models select the appropriate beamforming vectors directly from 
the transmitted signals in a blind manner without a-priori known 
information

 The communication overhead is minimized; however, it is 
difficult to capture a representative dataset for training purposes

 It has been demonstrated that novel CNN and LSTM-based 
models may exploit inherent time and frequency correlations of 
OFDM signals (96% of peak performance achieved with only 
18% of training data for the best model)1

1I. Nikas, C. Mavrokefalidis, K. Berberidis, “Efficient Deep Model Training for Coordinated 
Beam-Forming in mmWave Communications”, in proc. of IWSSIP’22
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SP&ML over networks - Motivation (1/10)

 In many cases, immense amounts of data are available, but at 
different spatial locations. Exchanging data can be prohibitive 
because of

 Inefficient communication resources

 Privacy considerations

 OR different nodes (spread in space) observe the same 
phenomenon

 OR they observe different views of the same phenomenon

 OR several subsets of nodes observe different phenomena

 We would like to establish a cooperation between the nodes 
so as to Estimate/Detect/Learn using all that data
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SP&ML over networks - Formulation (2/10)

 Let us assume that there are agents with sensing, processing, 
and communication capabilities and a common task. 

 The agents may or may not collaborate with each other. In the 
former case, there can be an underlying communication topology 
and let denote the neighborhood of agent 

All agents aim to estimate / detect / learn a common unknown 
variable using a-priori known information (e.g., statistical 
models in the form of probability density functions, available 
local data, etc.)
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SP&ML over networks - Formulation (3/10)

 This is accomplished by minimizing a local cost-function 

 This cost-function can be (non)-convex

 The minimization problem may incorporate constraints (in 
the form of regularizers or otherwise)

 In our discussion, the so-called global cost function is also 
relevant, denoted as

௢
௪ ௞

௞
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SP&ML over networks - Examples (4/10)

 In automotive domain, connected and autonomous vehicles 
may collaborate

 They employ cameras, LiDAR, GPS and other sensors 

 They aim for, e.g., (a) vehicle and pedestrian recognition and (b) 
improving they localization information (positioning of themselves and 
the surrounding vehicles)

 They use, for example, data-driven models (e.g., CNN-based, 
Transformer-based, etc.)

 In wireless communications, devices may collaborate
 They sense for transmitting signals in spectral bands of interest

 They aim for detecting spectral gaps to utilize them for their 
transmissions  (Cognitive Radio Networks)

 They use detection theory (if signal models are available) or data-driven 
models  (e.g., CNNs)
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SP&ML over networks - Examples (5/10)

 In the environmental domain, devices in an IoT network may 
collaborate towards a common task:

 The devices sense the temperature and / or other environmental 
quantitates in an area of interest 

 They aim for forecasting future values in the short or long term

 To this end, model-based linear predictors or data-driven models can be 
used (e.g., LSTMs)

 In smart-grids, end-users (namely, consumers) may collaborate:
 They employ smart meters for measuring the power consumptions of 
houses / devices

 The aim is to, e.g., forecast future consumption requirements for driving 
demand-response services or employ energy disaggregation for extracting 
consumption information of individual devices

 To this end, again data-driven models can be learned and employed 
(e.g., dictionaries per device, LSTMs, etc.).
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SP&ML over networks - Topologies (6/10)

 In non-cooperative topologies, each agent operates individually 

 In centralized or parallel topologies or federated, local processing is 
employed by agents, while sending only local inferences to the fusion 
center 

 In networked or decentralized topologies, all participating entities are 
peers and collaborate for a common task

1Vlaski et al., “Networked Signal and Information Processing: Learning by multiagent systems”, IEEE Signal 
Processing Magazine, 2023
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SP&ML over networks –
The non-cooperative case (7/10)

 Here, each agent operates in a stand-alone 
fashion and solves a minimization problem with 
respect to its local cost-function using, 
e.g., gradient descent:

1Vlaski et al., “Networked Signal and Information Processing: Learning by multiagent systems”, IEEE Signal 
Processing Magazine, 2023

௞,௜ାଵ ௞,௜ ௞ ௞,௜

 In case, the true gradient is not known, the estimation is used. In this case, 
the stochastic gradient descent iterations are employed.

 In the non-cooperative case, common knowledge cannot be exploited, 
and, in case, the local available dataset is not large enough, the minimization 
might lead to a poorly performing data-driven model.
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SP&ML over networks –
The centralized / federated case (8/10)

 Here, the minimization is performed following 
a two-step iterative procedure in order to 
guarantee a consensus among the agents. 

 (Local step) In the first step, each agent 
performs local processing and forwards the 
results of the operation to a fusion center. 

 For example, stochastic gradient descent is 
used

௞,௜ାଵ ௞,௜ ௞ ௞,௜

 (Consensus step) In the second step, the fusion center aggregates the 
received results, namely, the ’s using, for example, a mean rule, to get 
the new global model:

௜ାଵ ௞,௜

௄

௞ୀଵ
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SP&ML over networks –
The fully distributed case (9/10)

 Transmitting all data to a single location is costly

 Processing all data by a single processor is impractical

 Individual agents may not want to share sensitive/confidential local data
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SP&ML over networks –
The fully distributed case (10/10)

 Incremental:
 Cyclic structure, each node knows its

upstream and downstream neighbor

 Each note sends its estimate to one neighbor

 NP-hard problem

 It may converge to the centralized solution

 Diffusion:
 Each node communicates with (all) its neighbors

 Communications cost is higher / More data to process

 May even outperform the centralized solution

 Higher reliability
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Reconfigurable intelligent surfaces (1/3)

 Current wireless communication system designers focus their 
efforts on the functionality of the TX and RX devices

 The wireless channel is uncontrollable and should be 
considered for efficient TX/RX operation using appropriate 
models, acquiring each impulse response, etc.

TX Functions (e.g., 
modulation, 

beamforming, etc.)

RX functions (e.g., 
channel estimation, 

equalization, 
detection, etc.)

Wireless 
channel

Given by nature. Something to be dealt 
with by the TX  /RX functionalities
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Reconfigurable intelligent surfaces (2/3)

 The designers of future wireless communication systems will 
be able to also control the wireless channels!!!

 The smart radio environment is currently under study

A smart radio environment is a wireless environment that is 
turned into a smart reconfigurable space and that plays an active 
role in transferring and processing information 

 Namely, the wireless environment itself is turned into a software-
reconfigurable entity 

 Its operation is optimized to enable uninterrupted connectivity, quality 
of service guarantee, etc.
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Reconfigurable intelligent surfaces (3/3)

An enabler for smart radio environments is the so-called 
Reconfigurable Intelligent Surface (RIS)

 RIS can be considered as an array of reconfigurable elements
 Passive elements can reflect the incident signal with an appropriately 
controllable phase shift to coherently add at RX

Active elements can also amplify the reflected signals via amplifiers so 
as to compensate for the large path loss of RIS-aided links,

 RIS may achieve

 high array gain, low cost, and  

 low power consumption, 

 high spectral efficiency
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Coordinated MultiPoint transmissions  (1/3)

 Coordinated Multi-Point (CoMP) transmissions enhance 
throughput and coverage performance by reducing (or managing) 
interference, especially for cell-edge users.

 Multiple BS stations either transmit to or receive from a single 
device by transmitting collaboratively coherent signals
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Coordinated MultiPoint transmissions  (2/3)

 In CoMP, BSs coordinate using, e.g., fiber links, either via the 
central unit or directly in a distributed fashion by exchanging CSI 
information.

Centralized CoMP Distributed CoMP
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Coordinated MultiPoint transmissions  (3/3)

As an example, cell-edge throughput improvement via CoMP in 
small cells is considered1

 To support many users in modern wireless systems, existing and 
new technologies need to coexist and share limited resources

Assuming a group of small cells, clustering of BSs in COMP 
employing NOMA and beamforming is considered

A coalition formation game is 
formulated for clustering the BSs 
for improving cell-edge user 
throughput without affecting
the remaining users

1P Georgakopoulos et al., “Coalition Formation Games for Improved 
Cell-Edge User Service in Downlink NOMA and MU-MIMO Small Cell 
Systems”, IEEE Access, 2021


