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Abstract
Massive multiple-input multiple-output (MIMO) 

is a key technology for emerging next-generation 
wireless systems. Utilizing large antenna arrays at 
base-stations, massive MIMO enables substantial 
spatial multiplexing gains by simultaneously serv-
ing a large number of users. However, the com-
plexity in massive MIMO signal processing (e.g., 
data detection) increases rapidly with the number 
of users, making conventional hand-engineered 
algorithms less computationally efficient. Low-com-
plexity massive MIMO detection algorithms, espe-
cially those inspired or aided by deep learning, 
have emerged as a promising solution. While there 
exist many MIMO detection algorithms, the aim 
of this magazine article is to provide insight into 
how to leverage deep neural networks (DNN) 
for massive MIMO detection. We review recent 
developments in DNN-based MIMO detection that 
incorporate the domain knowledge of established 
MIMO detection algorithms with the learning 
capability of DNNs. We then present a comparison 
of the key numerical performance metrics of these 
works. We conclude by describing future research 
areas and applications of DNNs in massive MIMO 
receivers.

Introduction
As an integrated part of modern 5G and emerg-
ing 6G systems, massive MIMO offers several 
orders of magnitude enhancements in throughput 
and energy efficiency over conventional MIMO 
in existing 4G systems [1, 2]. Through the use of 
large antenna arrays with tens to thousands of 
elements, massive MIMO enables the design of 
extremely narrow spatial beams that boost the 
desired signal power, resulting in considerable 
performance gains in terms of user coverage 
and system throughput. However, the increase in 
the dimension of massive MIMO and the corre-
sponding increase in the number of served users 
adversely impact the complexity in its signal pro-
cessing pipeline. For example, optimal maximum 
likelihood (ML) detection comes with a complex-
ity that is exponential in the number of users. 
Low-complexity and near-optimal detection is thus 
crucial to fully realize the potential of massive 
MIMO system performance targets.

For massive MIMO systems, in which a base 
station equipped with a large array of antennas 

serving a large number of users simultaneously, 
low-complexity detectors, such as zero-forcing (ZF) 
and linear minimum mean-squared error (LMMSE) 
may incur large performance gaps compared with 
the optimal ML detector. In contrast, near-optimal 
detection schemes, such as sphere decoding (SD), 
K-best SD (KSD), and fixed-complexity SD (FSD), 
may come at the cost of excessively high complex-
ity [3]. The algorithm deficits of these convention-
al approaches prompt the interesting prospect of 
applying deep learning (DL) for massive MIMO 
detection [4], in which the computational complex-
ity is shifted to an offline training phase, enabling 
faster run time in the online detection phase.

The application of DL in communications has 
recently gained much attention. Several mod-
el-based deep neural network (DNN) architectures 
have been proposed for massive MIMO detec-
tion. The pioneering detection network (DetNet), 
introduced by Samuel et al., [5], has showcased 
the power of DL for MIMO data detection. A 
fast-convergence sparsely-connected neural net-
work (FS-Net) has been recently proposed in [6] 
as a simplified but optimized variant of DetNet. 
DetNet and FS-Net were both developed to mimic 
and optimize the iterative gradient descent algo-
rithm. Another notable approach in DNN-based 
detection is based on the orthogonal approximate 
message passing (OAMP) algorithm [7], offering 
better performance, as well as lower computation-
al complexity compared to gradient descent-based 
algorithms. In particular, He et al., introduced 
OAMP-Net2 [8] for data detection in both inde-
pendent and identically distributed (i.i.d.) Gaussian 
and small-size correlated channels. Khani et al., [9] 
proposed MMNet targeting data detection in cor-
related MIMO channels, and showed that it signifi-
cantly outperforms OAMP-Net2. We note that all 
these detection networks are based on the deep 
unfolding technique [10] and designed to optimize 
the free parameters of the underlying detection 
algorithms.

In this article, we present a holistic framework 
for leveraging DNNs in massive MIMO data detec-
tion. We review the conventional MIMO detec-
tion algorithms, and show how to incorporate the 
domain knowledge of these established algorithms 
into the development of DNN detectors, including 
DetNet, FSNet, OAMP-Net2, and MMNet. We 
then present numerical results comparing key per-
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ACCEPTED FROM OPEN CALL formance metrics of these works, including sym-
bol error rate (SER) and run time. We conclude by 
describing future research areas and applications 
of DNNs in massive MIMO communications. 

Background

Signal Model and MIMO Detection Problem
We consider an uplink massive MIMO system, 
where the base station (BS) equipped with N 
antennas serves K single-antenna users. Note that 
the detectors presented in this article are also 
applicable to multi-antenna users. The propaga-
tion channel from the users to the BS is modeled 
by a matrix H, in which each entry represents the 
channel between a user and a receive antenna. 
We denote by x the vector of K transmitted sym-
bols associated with K users, and we assume that 
these symbols are drawn from a discrete alphabet 
A. The input-output relationship of the considered 
system is modeled as:

y = Hx + n,

where y is a vector of the received signals at 
the N antennas of the BS, and n is a noise vec-
tor. Since the use of complex-valued parameters 
is uncommon in machine learning, we assume 
that all quantities in Eq. 1 are real-valued. This is 
also a matter of notational convenience, since 
a length-n complex-valued vector is isomorphic 
to a length-2n real-valued vector. In addition, a 
square complex-valued constellation of size n2 
(i.e., quadrature phase-shift keying (QPSK) and 
16-quadrature amplitude modulation (16-QAM)) 
can be effectively represented by two indepen-
dent real-valued alphabets of size n. The above 
model assumes a flat-fading or narrowband chan-
nel and the channel matrix is assumed to be 
known at the receiver. Our discussion can easily 
be extended to wideband channels using orthog-
onal frequency division multiplexing (OFDM).

The task of MIMO detection is to determine 
the transmitted symbol vector x based on the 
received vector y. The detection error is minimized 
by classifying the most likely x with the ML criterion 
when no a priori information is available. That is 
equivalent to finding the solution to the optimi-
zation problem minxÎAK ||y – Hx||2. MIMO ML 
data detection is a combinatorial problem, and its 
complexity grows exponentially with the number 
of users K. Performing joint detection of the entire 
symbol vector x is computationally expensive even 
for a small-scale MIMO system, and even more 
so for massive MIMO systems. For example, the 
search space AK grows to a set of 232 candidates 
for a relatively modest large-scale MIMO system 
supporting 8 users with 16-QAM. Thus, there is 
a need for near-optimal and reduced-complexity 
data detection algorithms that scale well to massive 
MIMO systems. To this end, we first review two 
typical classes of massive MIMO data detection 
schemes, namely, linear and nonlinear detectors 
with a comprehensive review in [11].

Conventional MIMO/Massive MIMO Data Detectors
Linear Data Detectors: Linear data detectors with 
low complexity are practical candidates for mas-
sive MIMO systems [2]. These detection schemes 
detect one symbol at a time while treating all the 

other symbols transmitted from the other users as 
interference. The estimated symbol is obtained 
from a linear combination of the received signals, 
which is then projected into the nearest symbol 
in the alphabet A. The simplest of these is the 
matched-filter (MF) detector which aims at maxi-
mizing the energy of the signal of interest.

A ZF detector targets elimination of the inter-us-
er interference. Both schemes require relatively 
few computations, but they suffer from significant 
performance degradation due to the interference 
and/or noise enhancement. Unlike these two, an 
LMMSE detector tries to balance the enhance-
ments in the signal of interest and the interference/
noise. The LMMSE detector achieves the best 
performance among the three detectors, but it 
requires a matrix inversion, which can quickly result 
in excessive complexity for large-scale MIMO sys-
tems.

While relatively simple to implement, except 
the possible need for a matrix inversion, linear 
detectors can achieve good performance when 
the number of receive antennas is large enough 
compared to the number of users and the channel 
vectors from different users are independent [1, 2]. 
However, their performance deteriorates quickly 
when the number of users approaches the num-
ber of receive antennas or when the channel is 
ill-conditioned [11], prompting the need for more 
sophisticated nonlinear detectors.

Nonlinear Detectors: SD is one of the most 
well-known nonlinear algorithms for MIMO detec-
tion. Similar to ML detection, SD attempts to find 
the optimal lattice point closest to y. However, its 
search is limited to the points inside a hypersphere 
which is a subset of the feasible set AK and deter-
mined by a given radius. Each time a point lying 
inside the hypersphere is found, the search is fur-
ther restricted by shrinking the sphere. When there 
is only one point in the sphere, the point becomes 
the final solution. The better optimized the sphere 
radius is, the better performance and/or complexi-
ty reduction can be achieved by SD [3].

Approximate message passing (AMP) is a rela-
tively low-complexity iterative signal recovery algo-
rithm for large-scale linear systems. A variant of 
AMP, referred to as OAMP [7], has been exploit-
ed for MIMO data detection in recent papers. In 
OAMP, the recovered signal is updated via a non-
linear transformation of the previous iterate, which 
includes a linear estimator and a nonlinear denois-
er. OAMP can attain near-optimal performance 
in few iterations. Except for a highly complicated 
matrix inversion in the linear estimator, OAMP 
can be a promising technique for massive MIMO 
detection.

The conventional MIMO detectors discussed 
above, especially those originally proposed for 
conventional small-sized MIMO systems, lead to 
a challenging performance-complexity trade-off. 
Specifically, nonlinear detectors with near-optimal 
performance but high complexity may not be fea-
sible for deployment in large-scale systems. On the 
other hand, the linear detectors with low complex-
ity perform relatively poorly in large-scale systems 
where the numbers of users and receive antennas 
are comparable. This concern motivates recent 
research on DL for massive MIMO detection.

DNN Detector for Linear MIMO Systems

The task of MIMO 
detection is to deter-
mine the transmitted 

symbol vector x based 
on the received vector 

y. The detection error is 
minimized by classifying 

the most likely x with 
the ML criterion when 
no a priori information 

is available.
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In this section, we provide an overview of the 
design of DNN detectors in MIMO and massive 
MIMO systems. We first focus on the fundamen-
tals of a DNN detector. We then review and ana-
lyze recent developments of DNN detectors in 
the literature.

Fundamentals of DNN-Based Data Detection
A DNN model can be trained efficiently to provide 
reliable prediction/approximation of the transmit-
ted signal vectors. It accepts the received signals y 
and channel information H as inputs and outputs 
an estimate x̂ of the transmitted signal vector x. In 
this respect, x̂ can be modeled as the target of a 
nonlinear mapping f(H, y; q), where q consists of 
parameters pertaining to the neural network. The 
fidelity of the mapping f(·), also known as the infer-
ence rule, is measured by a cost function, which is 
defined as the mean squared error (MSE) between 
the estimate x̂ and the true transmitted signal x. 
The goal of a DNN detector is to design f(·) via the 
optimization of the parameters q to minimize this 
cost function. The data for training a DNN detec-
tor can be generated from the system model Eq. 1 
with known prior distributions on the channel, the 
transmitted symbols, and the noise.

Most of the computational complexity of a 
DNN detector lies in the offline training phase. 
On the other hand, a DNN detector enables data 
detection with a much lower computational com-
plexity at run time. This can be accomplished by 
performing the task in batch, offering polynomial 
time complexity in data detection based on simple 
matrix additions and multiplications. These oper-
ations are far simpler than the computationally 
expensive matrix inversions/pseudo-inversions or 
searching mechanisms that are performed in con-
ventional linear or nonlinear detection algorithms. 
Furthermore, the DNN architectures, and their 
batch operations, are more natural for hardware 
implementation than hand-engineered algorithms, 
which is a critical distinction between the two.

An efficient DNN detector requires good 
designs across various aspects, including, but not 
limited to, the network architecture, input struc-
ture, and training strategy. In [5], it was shown 
that a generic fully-connected DNN with only the 
received signals and channel coefficients as inputs 
leads to poor detection performance. In contrast, 
DetNet [5], FS-Net [6], OAMP-Net2 and its pre-
decessor OAMP-Net [8], and MMNet [9] can 
achieve excellent performance in MIMO detection 
by exploiting not only the learning ability of DL, but 

also the domain knowledge from hand-engineered 
data detection algorithms. All of these detectors 
follow an unfolding network architecture [10], 
allowing data detection to be performed in a lay-
er-by-layer manner. The ingenuity of these architec-
tures lies in the design of each layer, derived from 
well-developed data detection algorithms, leading 
to their differing performance and complexity.

Gradient Descent-Based DNN Detectors
A gradient descent-based DNN detector incorpo-
rates the projected gradient descent (PGD) algo-
rithm into the unfolding network architecture in 
an ingenious way. The network mimics the update 
process of the PGD algorithm and generates an 
estimated symbol vector at each layer. The opera-
tion at layer-ℓ is modeled by a nonlinear transfor-
mation x̂ℓ = fgd(x̂ℓ–1 – dℓHTy + dℓHTHx̂ℓ–1), which 
accepts the output of the previous layer and infor-
mation from the channels and the received signals 
as inputs. The network is trained to optimize the 
nonlinear transformation fgd(·) and the step sizes 
dℓ, motivating the developments of DetNet and 
FS-Net.

DetNet: To learn the nonlinear projection fgd(·) 
of the original PGD method, DetNet employs a 
trainable parameter set, including the weights, bias-
es, and step sizes. We illustrate the operation of the 
ℓth layer of DetNet in Fig. 1. In the DetNet archi-
tecture, a soft quantizer y is introduced at the end 
of the layer to perform a soft element-wise quanti-
zation of the output x̂ℓ+1. This ensures that the ele-
ments of x̂ℓ+1 are in an appropriate range specified 
by the modulation scheme. In DetNet, the initial 
solution x̂0 is set to all-zero vector, which is then 
updated over L layers of the DNN to approach the 
true transmit signal vector by minimizing the loss 
function SL

ℓ=1log(ℓ)||x – x̂ℓ||2. The final solution of 
DetNet is obtained by a hard quantization of the 
last layer’s outputs (i.e., x̂L) to the nearest symbols 
in the alphabet A.

The network architecture and operations of 
DetNet exhibit the following potential issues:
•	 The value of the loss function of one layer in 

DetNet is added to the total loss of the network 
with a discounted weight, while the solution pre-
dicted in one layer is obtained using only the 
connections in that layer and the input passed 
from the previous layer. Sophisticated features 
cannot be extracted within one layer, implying 
that the loss function of DetNet limits the learn-
ing ability of multiple hidden layers in a gener-
al DNN. Furthermore, it is evident that this loss 
function only minimizes the total loss of all the 
layers. However, it does not minimize the num-
ber of required layers to accelerate the training 
and prediction [6].

•	 As seen in Fig. 1, an intermediate signal vector vl 
is concatenated with x̂ℓ – dℓ+1HTy + dℓ+1HTHx̂ℓ 
to form the inputs that are processed by the 
network connections. Although vl helps to 
overcome the limitations of the loss function 
[5], it enlarges the size of the input vector and 
additionally requires a sub-network associated 
with the trainable parameter set {W3ℓ, b3ℓ}. 
This makes DetNet computationally expensive. 
Moreover, the use of different step sizes (i.e., 
q1ℓ, q2ℓ) in DetNet is not clearly motivated or 
suggested by the PGD procedure in fgd. We 
note that both vℓ and q2ℓ can be removed in 

FIGURE 1. The ℓth layer of DetNet with trainable parameters qℓ = {W1ℓ, b1ℓ, 
W2ℓ, b2ℓ, W3ℓ, b3ℓ, q1ℓ, q2ℓ}, a rectified linear unit (ReLU), � and a soft quan-
tizer y.
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refined versions of DetNet.
Despite the above limitations, DetNet offers 

several performance advantages. In simulations 
for a massive MIMO system with 60 receive and 
30 transmit antennas and binary phase-shift key-
ing (BPSK), DetNet exhibits a 2-dB performance 
gain over the ZF detector and performs very close 
to the SD scheme with much lower complexity. 
This justifies the potential of DNNs in estimating 
the symbols transmitted via fading channels and 
observed by a noisy receiver.

FS-Net: FS-Net is proposed in [6] to overcome 
the limitations of DetNet. It achieves not only a 
considerable complexity reduction thanks to a 
simple network architecture (Fig. 2), but also sig-
nificant performance improvement compared to 
DetNet [6]. These gains are obtained thanks to the 
following improvements:
•	 FS-Net does not require the intermediate vec-

tor vℓ and only uses one trainable step size. 
Clearly, this simplifies the network structure and 
reduces the number of trainable parameters 
approximately by half, facilitating a better train-
ing while also being more computationally effi-
cient than the original DetNet.

•	 In FS-Net, pair-wise connections between the 
input and output nodes are deployed instead 
of full connections as in DetNet. This is moti-
vated by the fact that in fgd, an element of the 
output x̂ℓ+1 only depends on the corresponding 
element of x̂ℓ. The pair-wise connections signifi-
cantly reduce the number of trainable parame-
ters.

•	 Finally, FS-Net employs an optimized loss func-
tion to accelerate the convergence in the train-
ing phase. The new loss function takes into 
account the correlation between the output 
of each layer and the label (i.e., the true trans-
mitted signal vectors), thus ensuring that x̂ℓ can 
reach x with fewer layers, compared to DetNet.

Approximate Message Passing-based DNN Detectors
In this section, we review another prominent 
group of DNN detectors, consisting of OAMP-
Net2 [8] and MMNet [9]. Similar to their PGD-
based counterparts, OAMP-Net2 and MMNet 
follow the unfolding technique [10]. However, 
the major distinction between these two groups is 
the domain knowledge leveraged for constructing 
the layered architecture. The DNN detectors in 
this group are based on the iterative OAMP signal 
recovery algorithm.

The OAMP framework sequentially invokes a 
linear estimator and a nonlinear denoiser to refine 
the recovered signal. At iteration ℓ, it computes 
a linear estimate rℓ = x̂ℓ + Wℓ(y – Hx̂ℓ), using the 
estimated signal from the previous iteration and 
a linear estimator Wℓ. The linear estimate is then 
passed through a nonlinear denoiser h(x|rℓ, tℓ) 
that provides a divergence-free estimate x̂ℓ+1. This 
nonlinear denoiser is an affine function of the pos-
terior mean ~h(x|rℓ, tℓ) = E[x|rℓ = x + tℓz], where 
tℓ

2 is treated as the error variance and z is an i.i.d.  
standard Gaussian distributed error vector after 
the linear estimation. To improve the performance 
of OAMP as a data detection algorithm, OAMP-
Net2 and MMNet were proposed to leverage the 
learning ability of DNNs for optimizing the free 
parameters in the linear estimator and the nonlin-
ear denoiser.

OAMP-Net2: OAMP-Net2, as illustrated in Fig. 
3, and its predecessor OAMP-Net strictly follows 
the OAMP framework. Specifically, He et al., [8] 
proposed the training of four variables {gℓ, qℓ, fℓ, 
xℓ} at each layer to form the linear estimate x̂ℓ + 
gℓWℓ(y – Hx̂ℓ) and the denoiser h(·; fℓ, xℓ, tℓ) = 
fℓ~h(x|rℓ, tℓ) – xℓrℓ(gℓ). The trained parameters 
can significantly improve the accuracy and con-
vergence of the nonlinear estimator. Specifically, 
{gℓ, qℓ} can improve the accuracy in estimating the 
prior mean rℓ and variance tℓ2(qℓ) in the nonlinear 
estimator. At the same time, fℓ and xℓ are trained 
to achieve a better divergence-free nonlinear esti-
mator x̂ℓ+1 than the analytical solution in [7].

OAMP-Net2 achieves an impressive perfor-
mance improvement compared to the conven-
tional linear/nonlinear detectors. Specifically, a 
numerical example for an 8  8 MIMO system 
with i.i.d. Rayleigh fading channels shows that it 
can perform 5-dB and 10-dB better than the clas-
sical OAMP and LMMSE schemes [8]. However, 
like OAMP, OAMP-Net2 is strictly based on the 
assumption of unitarily-invariant channels. There-
fore, it has a significant performance loss for real-

FIGURE 2. The ℓth layer of FS-Net with trainable parameters qℓ = {W1ℓ, W2ℓ, 
bℓ}L

ℓ=1 with diagonal W1ℓ and W2l and a soft quantizer y.
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istic correlated channel models [9]. Furthermore, 
OAMP-Net2 imposes high complexity (even higher 
than the classical OAMP) due to the additional 
trainable parameters.

MMNet: Khani et al., proposed MMNet [9] to 
overcome the limitations of OAMP-Net. Similar to 
OAMP-Net and OAMP-Net2, MMNet unfolds the 
iterative update of the linear and nonlinear estima-
tors. However, a significant improvement is made 
to overcome the poor performance of the OAMP 
algorithm for correlated channels. As illustrated in 
Fig. 3, MMNet can be summarized as follows:
•	 Matrix Wℓ, which represents the linear transfor-

mation in the linear estimator of OAMP and 
OAMP-Net2, is cast as a trainable matrix vari-
able Q1ℓ in MMNet. This allows the linear estima-
tor rℓ to include more trainable parameters that 
can be optimized for each channel realization. 
Moreover, it also avoids the matrix inversion in 
Wℓ, required by OAMP and OAMP-Net2.

•	 To handle the cases in which different trans-
mitted symbols have different noise levels, 

the error variance tℓ
2 is parameterized by a 

length-K vector q2ℓ, corresponding to the esti-
mated error variances for the K users at the 
denoiser input.
MMNet offers more flexibility in designing the 

linear estimator and the denoiser, compared to the 
OAMP algorithm. Simulation results in [9] showed 
that MMNet outperforms OAMP-Net by 3-dB and 
reduces the computational complexity by a factor 
of 10–15 for practical 3GPP channels. It is, how-
ever, noted that MMNet requires retraining for 
each channel realization. A simplified version of 
MMNet, called MMNet-iid, was also proposed in 
[9] for detection with i.i.d. Gaussian channels. In 
MMNet-iid, the trainable matrix/vector Q1ℓ and q2ℓ 
are replaced by q1ℓHT and q2ℓ, respectively, where 
q1ℓ and q2ℓ are trainable scalars.

Numerical Examples and Discussion

Numerical Examples
Figures 4 and 5 provide performance compari-
sons between the discussed detection networks 
(i.e., DetNet, MMNet, FSNet, and OAMPNet2) 
and the conventional LMMSE and SD detec-
tors. We consider (K, N) = (16, 32) and set L 
= 10 for QPSK and L = 15 for 16-QAM. In the 
training phase, we set the learning rate to 10–3 
and the batch training size to 1000. Simulations 
were implemented on a standard Intel Xeon CPU 
E3-1270 v5, 3.60 GHz with 16-GB RAM, using 
the Tensorflow library. It should be noted that 
except for MMNet, all the other detection net-
works are trained offline. MMNet was designed to 
be trained online (i.e., it has to be retrained when-
ever the channel matrix H changes).

The performance comparison in the upper part 
of Fig. 4 is, for the case of i.i.d. Rayleigh, fading 
channels. It shows that the DNN-based detectors 
outperform the LMMSE scheme. Among the con-
sidered DNN-based detectors, DetNet provides 
the worst performance. Compared to LMMSE, the 
gain of DetNet is only about 1-dB and 0.5-dB for 
QPSK and 16-QAM, respectively. The OAMP-Net2 
detector provides the best performance (quite 
close to that of the SD method) with a 2-dB gain 
compared to LMMSE in both the cases of QPSK 
and 16-QAM. FS-Net performs as well as OAMP-
Net2 for the case of QPSK, but worse for 16-QAM. 
The performance of MMNet-iid is between DetNet 
and OAMP-Net2.

The lower part of Fig. 4 presents a performance 
comparison for the case of spatially correlated 
channels. We assume that the channels from dif-
ferent users to the BS are uncorrelated but the 
channels from a given user to the receive anten-
nas are spatially correlated and follow a typical 
urban channel model as described in [12]. It is also 
observed that the DNN-based detectors outper-
form the LMMSE scheme. Among the considered 
DNN-based detectors, DetNet also provides the 
least performance gain at about 1-dB and 0.5-dB 
over LMMSE for the case of QPSK and 16-QAM, 
respectively. MMNet achieves the lowest SER (also 
quite close to that of the SD method) in this cor-
related channel scenario thanks to its online train-
ing strategy, but with the cost of excessively high 
computational complexity. In contrast, the other 
DNN-based detectors are trained offline before 
the online detection (re-training is not required) 

FIGURE 4. Performance comparison between LMMSE, SD, and different 
detection networks with i.i.d. and correlated channels.
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and, thus, they have lower computational com-
plexities compared to MMNet. Note that the com-
plexity of offline training is generally ignored in the 
literature [3, 6]. The gain of MMNet compared 
to LMMSE is significant (more than 2-dB). While 
FS-Net and OAMP-Net2 give similar performance 
for QPSK, FS-Net performs worse than OAMP-
Net2 for 16-QAM, similar to what was observed in 
i.i.d. channels.

Realistic 3GPP channels are considered in 
Fig. 5, where the QuaDRiGa 3GPP model [13] is 
adopted. We observed that the training process 
of DetNet and FS-Net did not converge with this 
channel model (a similar observation was report-
ed in [9]). Therefore, we compare the two detec-
tion networks OAMP-Net2 and MMNet with 
LMMSE and SD. MMNet performs closest to SD 
and much better than OAMP-Net2 and LMMSE. 
As explained earlier, this is due to the online train-
ing strategy of MMNet.

Table 1 compares the computational complex-
ity of the detection methods in terms of average 
run time. It is obvious that LMMSE has the lowest 
complexity since it is a linear detector. The com-
plexity of FS-Net is the lowest among the network 
detectors. The run times of MMNet-iid and OAMP-
Net2 are longer than that of FS-Net, because they 
use more complex denoisers and OAMP-Net2 
requires a matrix inversion in each layer. Among 
the DNN detectors that use offline training, Det-
Net has the longest run time because its layered 
structure is more sophisticated with many param-
eters and the input of each layer is also lifted to 
a much higher dimension. All the offline-training 
DNN detectors run faster than the SD detector. 
The computational complexity of MMNet is much 
higher than that of the other detectors because it 
must be trained online.

Discussion
DNN-based detection requires an offline training 
phase. The resulting trained DNN model is saved 
at the base station for online application. Once 
the DNN is deployed, the base-station does not 
require further training data, except for MMNet 
which uses online retraining. The following is a 
summary of the advantages and disadvantages of 
the presented detection networks:
•	 DetNet is better than LMMSE but computation-

ally expensive due to its sophisticated structure.
•	 FS-Net has lower complexity than DetNet, but 

its performance is degraded with large constel-
lations. Both FS-Net and DetNet may not con-
verge for certain practical channels.

•	 OAMP-Net2 performs well with i.i.d. and cor-
related channels, but not as well with realistic 
channels and is computationally expensive due 
to the use of matrix inversions.

•	 MMNet, while working well with any channel 
model, is very computationally expensive due 
to the need for online retraining. The simpli-

fied version MMNet-iid with offline training per-
forms well for its targeted i.i.d. channels.

Given the above discussion, it is clear that the 
development of more efficient, low-complexity, 
and universally-applicable DNN-based detectors is 
of significant interest.

Open Research Problems

Learning to Learn the MIMO Detector
The aforementioned DNN detectors tune their 
inference rules based on the training data. If there 
is a change in the data distribution (e.g., spatially 
correlated channel or sparse channel, a new map-
ping for the transmitted symbols, or a spatially 
correlated noise model), the trained DNN detec-
tor may become obsolete. Retraining the DNN 
detector from scratch for each new data distri-
bution may not be feasible. This issue prompts 
the consideration of meta-learning in the DNN 
detector design.

Meta-learning, also known as “learning to 
learn,” aims to design a model that learns from the 
output of other learning models using previously 
observed tasks. A notable meta-learning approach 
is to train the meta-learner’s initial parameters such 
that the model has maximal performance on new 
tasks with just a few gradient update steps [14]. In 
the context of DNN-based detection, it would be 
interesting to investigate how to apply meta-learn-
ing to pre-train the weights of the DNN detector to 
a good initialization point that generalizes well to 
new underlying data distributions.

Channel Estimation and Channel Decoding
A DNN detector requires knowledge of the chan-
nel, which must be estimated before the data 
detection phase. It would be interesting to investi-
gate the performance of the DNN detectors with 
potential channel estimation mismatch. In addi-
tion, the novel model-based DNN architectures 
can be designed to carry out both channel estima-
tion and data detection tasks.

Channel encoding/decoding is another inte-
gral part of communications systems. A well per-
forming code typically requires soft inputs from 
the demodulator. Thus, it is important for a DNN 
detector to provide soft detection outputs to the 
channel decoder. In addition, the DNN detec-
tor should be able to accept soft outputs from 
the channel decoder as prior information for the 
data symbol vector. This implementation would 
allow turbo-like joint MIMO detection and chan-
nel decoding with DNNs.

DNN-Based Detection for Nonlinear MIMO Channels
The majority of the proposed DNN-based detec-
tors in the literature tackle the detection problem 
in linear MIMO channels. However, a cost-effi-
cient and energy-efficient massive MIMO system 
may use non-ideal hardware that is prone to 

TABLE 1. Computational complexity comparison in terms of average run time (seconds).

LMMSE FS-Net
MMNet- 
iid

OAMP-
Net2

DetNet SD
MMNet (include training time)

10 epochs |100 epochs 500 epochs

QPSK 0.4  10–6 2  10–6 11  10–6 13  10–6 15  10–6 > 5  10–4 1.4 12 60

16-QAM 0.4  10–6 3  10–6 23  10–6 25  10–6 50  10–6 > 6  10–4 2.2 19 94
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impairments and nonlinear distortions. A DNN 
detector for massive MIMO systems with one-
bit ADCs, proposed in a recent work [15], has 
shown significant performance gain over algo-
rithm-based approaches. For massive MIMO sys-
tems that exhibit nonlinear power amplifiers and 
phase noise, developing novel DNN detectors is 
an open research direction.

Conclusion
We have reviewed several recent developments in 
DNN-based massive MIMO detection. By imitating 
the iterations in established MIMO detection algo-
rithms with a predetermined number of layers, a 
DNN detector with learned and fine-tuned param-
eters can offer fewer detection errors with lower 
computational complexity at run time. We believe 
that DNN-based detection can contribute to the 
development of low-complexity technologies for 
modern and emerging wireless networks.
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