UNIVERSITY OF PATRAS

DEPARTMENT OF BUSINESS ADMINISTRATION

FURTHER OPERATIONAL RESEARCH TECHNIQUES

Lecture 1: NETWORK ANALYSISINTRODUCTION

Patras 2022

Logistics

- Organization of the material
- 2 hours lecture
- Exercises or workshops when necessary
- 1 hour tutorial
- Note: Important to attend lectures!
- Office hours: To be arranged via e-mail
- e-mail: I.Giannikos@upatras.gr

Network Analysis An Introduction

Network Analysis An Introduction/2

 \times (3) O.A.S.A. || Telematics tools

$\leftarrow \rightarrow$ C (i) Not secure \mid telematics.oasa.gr/en/\#main

transport for athens

OASA Telematics
Real-time Information for Buses and Trolleys

Terms of use

Tools

Line Information
Stop Information
Best Route

Best route search, using the lines of O.A.S.A.

Going to.

```
Address - Street
```

Please select current or desirable departure of the route

Stop

Landmark

Walking up to (meters):	Departure:
$50 \cap$	$21 / 02 / 2020$ 11:12

21/02/2020 11:12

Network Analysis An Introduction/3

- Webpage of Athens Transport (www.oasa.gr)
- Application: Optimal (best) route
- How is optimality defined?
- Minimum distance
- Shortest time
- Minimum number of transits
- etc
- (These are well known problems in Network Analysis)

Network Analysis An Introduction /3

- More practical applications
- Transportation networks
- Telecommunication networks
- Scheduling
- Important developments
- New algorithms
- Technology
- Note
- Several network analysis problems can be formulated as Linear Programming problems (LPs)
- E.g. transportation problem, assignment problem

A (recent) story

A year-long investigation into Facebook, data, and influencing elections in the digital age

Key stories

// Politicians can't control the digital giants with rules drawn up for the analogue era Andrew Rawnsley

Hide

'Did they just use me? Was I naive?' / Brexit whistleblower speaks

Network Analysis Problems

- Shortest path
- Maximum Flow
- Minimum Cost Flow (MCF)
- The first two problems can be formulated as special cases of MCF
- Minimum spanning tree
- Scheduling

Example

- In a certain national park there are several kiosks connected by roads. Let O be the entrance and T the exit of the park.

Problems

- Which is the shortest route from O to T ?
- Which is the shortest route from O to any other kiosk?
- If any road can accept a limited number of cars per day, what is the maximum number of cars that can travel from O to T per day?
- If all kiosks must be connected by phone lines, what is the minimum length of lines required?

Some Definitions

- Graph
- A set of nodes V and edges E
- Edge (or arc or link)
- Directed
- Undirected
- Path (or route) from ito j
- A set of edges connecting i with \mathbf{j}
- Directed
- Undirected

More definitions

- Network
- A directed graph
- Each edge is characterized by
- Capacity (maximum flow it can accept)
- Cost per unit flow

Example

- Path AB-ВГ-ГE
- The set of edges $В Г-А Г-A \Delta$ is not a path!

Even more definitions

- Two nodes A and B are connected when there is a path from A to B .
- A graph is connected when any two nodes of the graph are connected
- Acycle is a path beginning and ending at the same node
- A tree is a connected graph without cycles

Example of a tree

- Properties of trees (proven theoretically):
- A tree with n nodes has $n-1$ edges
- Any pair of nodes in a tree is connected with a unique path

The Shortest Path Problem

- Assume that we have an undirected graph
- A node O is considered as the origin and another node T as the destination
- Every edge is characterized by a "distance" $\mathrm{d} \geq 0$
- Problem: Find the shortest path from the origin to the destination
- Nodes
- Permanent: nodes for which we have calculated the length of the shortest path from the origin
- Non permanent: all others

Dijkstra's Algorithm

1 Consider all nodes as non permanent, except the origin. Consider the origin as permanent node

2 Repeat until the end
2.1 For every permanent node find the nearest non permanent
2.2 Out of all candidates (non permanent nodes) select the nearest one to the origin and make it permanent

Dijkstra's Algorithm - Formal description

- Maintain a set S of permanent nodes u for which we have calculated the length of the shortest path $\delta(u)$ from the origin s to u
- Initially it is $\mathrm{S}=\{\mathrm{s}\}$ and $\delta(s)=0$
- Find a non permanent node v such that

$$
\operatorname{dist}(v)=\min _{e=(u, v): u \in S}\{\delta(u)+\text { length }(e)\}
$$

- Insert v to the set of permanent nodes and set $\delta(v)=\operatorname{dist}(\mathrm{v})$

Extensions

- The length of each edge may express time, cost, etc
- The algorithm may easily be adapted for directed graphs
- The algorithm may easily find the shortest path from the origin to any other node

Other Network Applications: The Safest Path Problem

- In the following network the nodes represent computers and the edges connections. The number next to each edge denotes the probability that the edge fails

- What is the safest path from node A to node D?

The Safest Path Problem/2

- Lets consider a specific path (e.g. path AFCD). What is the reliability of the path?

- Reliability: probability of no failure
- For path AFCD it is $(0,98) \cdot(0,97) \cdot(0,97)=0,922082$
- (the product of non failure probabilities)
-(Hence, the probability of failure is $1-0,922082=0,077918$)

The Safest Path Problem/3

- We wish to find the path from A to D which maximizes the reliability (safety)
- Generally: p(e) probability of failure along edge e
$q(e)=1-p(e)$ probability of non-failure along edge e
(E.g. for edge $A F$ it is $q(A F)=0,98$)
- The reliability of any path S, consisting of, say k edges, is:

$$
Q(S)=\prod_{e \in S} q(e)=q_{1} \cdot q_{2} \cdot \ldots \cdot q_{k}
$$

- We wish to find the path that maximizes function $Q(S)$
(We will formulate the problem as a Shortest Path problem)

The Safest Path Problem/4

- Since the logarithmic function is increasing, maximizing $Q(S)$ is equivalent to:

$$
\max \mathrm{z}=\ln \mathrm{Q}(S)=\ln \left(q_{1} \cdot q_{2} \cdot \ldots \cdot q_{k}\right)=\ln \left(q_{1}\right)+\ln \left(q_{2}\right)+\ldots+\ln \left(q_{k}\right)
$$

- (Since the Shortest Path problem concerns minimization, we have:)

$$
\begin{gathered}
\max \mathrm{z}=\min -\mathrm{z} \\
\min -\mathrm{z}=\min \mathrm{z}^{\prime}=-\ln \left(q_{1}\right)-\ln \left(q_{2}\right)-\cdots-\ln \left(q_{k}\right)
\end{gathered}
$$

- If we let $\quad w(e)=-\ln q(e)$
- Then the function is written: $\min \mathrm{z}^{\prime}=w_{1}+w_{2}+\ldots+w_{k}$
- (I.e. we have a shortest path problem with weights $w_{1}, w_{2}, \ldots, w_{k}$)

The Safest Path Problem/5

- The new graph is:
- Since

$$
q(e)=q_{e}<1
$$

- It is

$$
\ln \left(q_{e}\right)<0
$$

- And, finally $w(e)=-\ln q(e)>0$
- Since we have positive weights, we can apply Djikstra's algorithm!

The Safest Path Problem/6

- The safest (most reliable) path is ABCD (or AFCD)
- (There are two optimal paths)

- Total (minimum) weight 0,0305+0,0202+0,0305=0,0812
- Reliability $e^{-0,0812}=92,21 \%$

Edges with negative length - Example

- Currency exchange rates
- Given the exchange rates in the international market, what is the best way to convert 1 ounce of Gold to UD Dollars?
- 1 oz . Gold corresponds to $\$ 327.25$.
- 1 oz. gold corresponds to $£ 208.10$ or $\$ 327.00$.
- 1 oz. gold corresponds to 455.2 Francs or 304.39 Euros or $\$ 327,28$
- Graph with
- Currencies as nodes
- Edges: conversions of one currency to others
- Problem: find the path which maximizes the product of rates

Contrast: Example with exchange rates

- By taking logarithms of the weights, we end up with a shortest path problem

- (Some) exchange rates are greater than 1
- Problem: negative weights!

Extension - Edges with negative length

- Dijkstra's algorithm cannot be applied in these cases. It may produce wrong solutions!
- A different approach is required
- If there exists a cycle from s to t with negative total weight, then the length of the path may become arbitrarily small (tends to $-\infty$)
- A special algorithm (known as the Bellman-Ford algorithm) allows for negative weights and identifies negative cycles

Main Idea (Edge Relaxation)

- Fundamental process in shortest paths
- For every $\mathbf{v} \in \mathrm{V}$, let δ [v] be the length of some path from s (the origin) to v
- Practically
- Edge relaxation sets δ [w] equal to the length of the shortest path from s to v if this path goes through node w i.e. if it includes edge (\mathbf{v}, w).

Edge Relaxation /2

- For every $\mathrm{v} \in \mathrm{V}$, pred [v] is the previous node to v in the current shortest path
- Relaxing edge (v, w)
$-\delta[v]$ the length of some path from s to v
$-\delta[w]$ the length of some path from s to w
- If δ [v$]+$ length $(\mathrm{v}, \mathrm{w})<\delta[w]$ then
- Update δ [w] and set pred $[w] \leftarrow \mathbf{v}$

Bellman - Ford (Moore) Algorithm (Outline)

- For $\mathrm{i}=1$ to $|\mathrm{V}|-1$ do
- For every edge (u,v)

Relax the edge (u, v)

- For every edge (u,v)
- If the edge can be relaxed, then there exists a cycle with negative total length (the problem does not have a finite solution)
- Practically, we need to determine the order in which we will visit the edges in each iteration
- (The order does not affect the final solution)

Bellman-Ford (Moore) Algorithm - Exercise 3

- Let \mathbf{s} be the origin
- The red number next to each node denotes the length of the current shortest path from the origin (initially it is $+\infty$, except at s)

- The order in which we will visit the edges is denoted by \#
- (This order does not affect the optimal solution)

Bellman-Ford (Moore) Algorithm - Implementation

- We then present the iterative steps of the algorithm
- Each time we denote the edge which is relaxed and the new length of the shortest path from the origin to the final node of the edge

Bellman-Ford (Moore) Algorithm - Exercise 3

- Iteration 1, Edge \#1

Bellman-Ford (Moore) Algorithm - Exercise 3

- Iteration 1, Edge \#3

Bellman-Ford (Moore) Algorithm - Exercise 3

- Iteration 1, Edge \#5

Bellman-Ford (Moore) Algorithm - Exercise 3

- Iteration 1, Edge \#8

Bellman-Ford (Moore) Algorithm - Exercise 3

- Iteration 1, Edge \#9

Bellman-Ford (Moore) Algorithm - Exercise 3

- Iteration 1, Edge \#12

- (This terminates the 1st iteration)

Bellman-Ford (Moore) Algorithm - Exercise 3

- Iteration 2, Edge \#2

Bellman-Ford (Moore) Algorithm - Exercise 3

- Iteration 2, Edge \#4

Bellman-Ford (Moore) Algorithm - Exercise 3

- Iteration 2, Edge \#7

Bellman-Ford (Moore) Algorithm - Exercise 3

- Iteration 2, Edge \#8

Bellman-Ford (Moore) Algorithm - Exercise 3

- Iteration 2, Edge \#9

Bellman-Ford (Moore) Algorithm - Exercise 3

- Iteration 2, Edge \#12

- (This terminates the 2nd iteration)

Bellman-Ford (Moore) Algorithm - Exercise 3

- Iteration 3, Edge \#4

Bellman-Ford (Moore) Algorithm - Exercise 3

- Iteration 3, Edge \#7

Bellman-Ford (Moore) Algorithm - Exercise 3

- Iteration 3, Edge \#12

- (This terminates the 3d iteration)

Bellman-Ford (Moore) Algorithm - Exercise 3

- No edges are relaxed at the $4^{\text {th }}$ iteration
- The algorithm terminates! (The red number next to each node denotes the length of the shortest path from s to that node)

Homework

- What will happen if the weight of edge BF is equal to 2 ?

Bellman-Ford (Moore) Algorithm - Another Example

- Let A be the origin
- The number next to each node represents the length of the shortest path from A

