
FURTHER OPERATIONAL RESEARCH

TECHNIQUES

UNIVERSITY OF PATRAS

DEPARTMENT OF BUSINESS ADMINISTRATION

Lecture 1: NETWORK ANALYSIS-

INTRODUCTION

Patras 2022

Logistics

• Organization of the material

– 2 hours lecture

– Exercises or workshops when necessary

– 1 hour tutorial

• Note: Important to attend lectures!

• Office hours: To be arranged via e-mail

• e-mail: I.Giannikos@upatras.gr

Network Analysis An Introduction

Network Analysis An Introduction/2

Network Analysis An Introduction /3

• Webpage of Athens Transport (www.oasa.gr)

• Application: Optimal (best) route

• How is optimality defined?

• Minimum distance

• Shortest time

• Minimum number of transits

• etc

• (These are well known problems in Network Analysis)

Network Analysis An Introduction /3

• More practical applications

– Transportation networks

– Telecommunication networks

– Scheduling

• Important developments

– New algorithms

– Technology

• Note

– Several network analysis problems can be formulated as Linear
Programming problems (LPs)

– E.g. transportation problem, assignment problem

A (recent) story

Network Analysis Problems

• Shortest path

• Maximum Flow

• Minimum Cost Flow (MCF)

– The first two problems can be formulated as special cases of MCF

• Minimum spanning tree

• Scheduling

Example

• In a certain national park there are several kiosks

connected by roads. Let Ο be the entrance and Τ the

exit of the park.

Ο

Α

Β

Γ

Δ

Ε

Τ

2

5

4

7

4

2

1

4

3

5

7

1

Problems

• Which is the shortest route from Ο to Τ?

• Which is the shortest route from Ο to any other kiosk?

• If any road can accept a limited number of cars per day, what is

the maximum number of cars that can travel from Ο to Τ per

day?

• If all kiosks must be connected by phone lines, what is the

minimum length of lines required?

Some Definitions

• Graph

– A set of nodes V and edges E

• Edge (or arc or link)

– Directed

– Undirected

• Path (or route) from i to j

– A set of edges connecting i with j

– Directed

– Undirected

More definitions

• Network

– A directed graph

• Each edge is characterized by

– Capacity (maximum flow it can accept)

– Cost per unit flow

Example

• Path ΑΒ-ΒΓ-ΓΕ

• The set of edges ΒΓ-ΑΓ-ΑΔ is not a path!

Α

Β

Γ

Δ

Ε

Even more definitions

• Two nodes A and B are connected when there is a path from A

to B.

• A graph is connected when any two nodes of the graph are

connected

• A cycle is a path beginning and ending at the same node

• A tree is a connected graph without cycles

Example of a tree

• Properties of trees (proven theoretically):

– A tree with n nodes has n-1 edges

– Any pair of nodes in a tree is connected with a unique path

Ο

Α

Β

Γ

Δ

Ε

Τ

2

4

4

4
7

The Shortest Path Problem

• Assume that we have an undirected graph

• A node Ο is considered as the origin and another node Τ as the

destination

• Every edge is characterized by a “distance” d0

• Problem: Find the shortest path from the origin to the

destination

• Nodes

– Permanent: nodes for which we have calculated the length

of the shortest path from the origin

– Non permanent: all others

Dijkstra’s Algorithm

1 Consider all nodes as non permanent, except the origin.

Consider the origin as permanent node

2 Repeat until the end

2.1 For every permanent node find the nearest non

permanent

2.2 Out of all candidates (non permanent nodes) select

the nearest one to the origin and make it

permanent

Dijkstra’s Algorithm – Formal description

• Maintain a set S of permanent nodes u for which we have

calculated the length of the shortest path δ(u) from the origin s

to u

• Initially it is S={s} and δ(s)=0

• Find a non permanent node v such that

 )()(min)(
:),(

elengthuvdist
Suvue

+=
=



• Insert v to the set of permanent nodes and set δ(v)=dist(v)

Extensions

• The length of each edge may express time, cost, etc

• The algorithm may easily be adapted for directed graphs

• The algorithm may easily find the shortest path from the origin

to any other node

Other Network Applications: The Safest Path Problem

• In the following network the nodes represent computers and the

edges connections. The number next to each edge denotes the

probability that the edge fails

2%

C

E

2%

Α

3%

3%

3%

3%

2%

2% 1%

Β

D

F

• What is the safest path from node A to node D?

The Safest Path Problem/2

2%

C

E

2%

Α

3%

3%

3%

3%

2%

2% 1%

Β

D

F

• Reliability: probability of no failure

• For path AFCD it is (0,98)(0,97)(0,97)=0,922082

• (the product of non failure probabilities)

• (Hence, the probability of failure is 1-0,922082=0,077918)

• Lets consider a specific path (e.g. path AFCD). What is the reliability

of the path?

The Safest Path Problem/3

• We wish to find the path from A to D which maximizes the reliability

(safety)

• Generally: p(e) probability of failure along edge e

q(e)=1─ p(e) probability of non-failure along edge e

(E.g. for edge AF it is q(AF)=0,98)

• The reliability of any path S, consisting of, say k edges, is:

k

Se

qqqeqSQ ==


...)()(21

• We wish to find the path that maximizes function Q(S)

(We will formulate the problem as a Shortest Path problem)

The Safest Path Problem/4

• Since the logarithmic function is increasing, maximizing Q(S) is

equivalent to:

ሻmax z=ln Q(𝑆ሻ = 𝑙𝑛 (𝑞1 ⋅ 𝑞2 ⋅. . .⋅ 𝑞𝑘ሻ = ln(𝑞1ሻ + 𝑙𝑛(𝑞2ሻ+. . . +ln(𝑞𝑘

• (Since the Shortest Path problem concerns minimization, we have:)

max z=min −z

ሻmin − z=min z′= − ln 𝑞1 − 𝑙𝑛(𝑞2ሻ − ⋯− ln(𝑞𝑘

• If we let)(ln)(eqew −=

• Then the function is written: min z′ = 𝑤1 +𝑤2+. . . +𝑤𝑘

• (I.e. we have a shortest path problem with weights w1, w2, …, wk)

The Safest Path Problem/5

• The new graph is:

C

E

0,0202

Α

Β

D

F

0
,0
3
0
5

0
,0
2
0
2

0,0202
• Since ሻ𝑞(𝑒 = 𝑞𝑒 < 1

• It is ln 𝑞𝑒 < 0

• And, finally ሻ𝑤(𝑒ሻ = − 𝑙𝑛 𝑞(𝑒 >0

• Since we have positive weights, we can apply Djikstra’s algorithm!

The Safest Path Problem/6

• The safest (most reliable) path is ABCD (or AFCD)

• (There are two optimal paths)

C

E

0,0202

Α

Β

D

F

0
,0
3
0
5

0
,0
2
0
2

0,0202

• Total (minimum) weight 0,0305+0,0202+0,0305=0,0812

• Reliability 𝑒−0,0812 = 92,21%

Edges with negative length - Example

• Currency exchange rates

– Given the exchange rates in the international market, what is the

best way to convert 1 ounce of Gold to UD Dollars?

– 1 oz. Gold corresponds to $327.25.

– 1 oz. gold corresponds to £208.10 or $327.00.

– 1 oz. gold corresponds to 455.2 Francs or 304.39 Euros or $327,28

• Graph with

– Currencies as nodes

– Edges: conversions of one currency to others

– Problem: find the path which maximizes the product of rates

Contrast: Example with exchange rates

• By taking logarithms of the weights, we end up with a shortest

path problem

• (Some) exchange rates are greater than 1

• Problem: negative weights!

Extension – Edges with negative length

• Dijkstra’s algorithm cannot be applied in these cases. It may

produce wrong solutions!

• A different approach is required

• If there exists a cycle from s to t with negative total weight,

then the length of the path may become arbitrarily small (tends

to ─∞)

• A special algorithm (known as the Bellman-Ford algorithm)

allows for negative weights and identifies negative cycles

Main Idea (Edge Relaxation)

• Fundamental process in shortest paths

• For every v ∈ V , let δ [v] be the length of some path from s (the

origin) to v

• Practically

– Edge relaxation sets δ [w] equal to the length of the

shortest path from s to v if this path goes through node w

i.e. if it includes edge (v, w).

Edge Relaxation /2

• For every v ∈ V , pred [v] is the previous node to v in the

current shortest path

• Relaxing edge (v,w)

– δ [v] the length of some path from s to v

– δ [w] the length of some path from s to w

– If δ [v] + length (v,w) < δ [w] then

• Update δ [w] and set pred [w]  v

Bellman – Ford (Moore) Algorithm (Outline)

• For i=1 to |V|-1 do

– For every edge (u,v)

Relax the edge (u,v)

• For every edge (u,v)

– If the edge can be relaxed, then there exists a cycle with

negative total length (the problem does not have a finite

solution)

• Practically, we need to determine the order in which we will

visit the edges in each iteration

• (The order does not affect the final solution)

Bellman-Ford (Moore) Algorithm – Exercise 3

• Let s be the origin

• The red number next to each node denotes the length of the

current shortest path from the origin (initially it is +∞, except at

s)

D F

B

Α

s

C

E

-1

-8

-3 -35

2

1

0

8

6

4

3

+∞

+∞
+∞

+∞

+∞

+∞

0

Bellman-Ford (Moore) Algorithm – Exercise 3

• The order in which we will visit the edges is denoted by #

• (This order does not affect the optimal solution)

D F

B

Α

s

C

E

-1

-8

-3 -35

2

1

0

8

6

4

3

+∞

+∞
+∞

+∞

+∞

+∞

0

#3

#1
#5

#12

#7

#6

#9#8

#2

#4

#11

#10

Bellman-Ford (Moore) Algorithm – Implementation

• We then present the iterative steps of the algorithm

• Each time we denote the edge which is relaxed and the new

length of the shortest path from the origin to the final node of

the edge

Bellman-Ford (Moore) Algorithm – Exercise 3

D F

B

Α

s

C

E

-1

-8

-3 -35

2

1

0

8

6

4

3

+∞

+∞
+∞

+∞

+∞

+∞

0

#3

#1
#5

#12

#7

#6

#9#8

#2

#4

#11

#10

• Iteration 1, Edge #1

4

Bellman-Ford (Moore) Algorithm – Exercise 3

D F

B

Α

s

C

E

-1

-8

-3 -35

2

1

0

8

6

4

3

+∞

+∞
+∞

+∞

+∞

4

0

#3

#1
#5

#12

#7

#6

#9#8

#2

#4

#11

#10

• Iteration 1, Edge #3

6

Bellman-Ford (Moore) Algorithm – Exercise 3

D F

B

Α

s

C

E

-1

-8

-3 -35

2

1

0

8

6

4

3

+∞

3

6

+∞

+∞

4

0

#3

#1
#5

#12

#7

#6

#9#8

#2

#4

#11

#10

• Iteration 1, Edge #5

+∞

Bellman-Ford (Moore) Algorithm – Exercise 3

D F

B

Α

s

C

E

-1

-8

-3 -35

2

1

0

8

6

4

3

+∞

3
6

4

+∞

4

0

#3

#1
#5

#12

#7

#6

#9#8

#2

#4

#11

#10

• Iteration 1, Edge #8

+∞

Bellman-Ford (Moore) Algorithm – Exercise 3

D F

B

Α

s

C

E

-1

-8

-3 -35

2

1

0

8

6

4

3

9

3
6

4

+∞

4

0

#3

#1
#5

#12

#7

#6

#9#8

#2

#4

#11

#10

• Iteration 1, Edge #9

+∞

Bellman-Ford (Moore) Algorithm – Exercise 3

D F

B

Α

s

C

E

-1

-8

-3 -35

2

1

0

8

6

4

3

9

31

4

+∞

4

0

#3

#1
#5

#12

#7

#6

#9#8

#2

#4

#11

#10

• Iteration 1, Edge #12

6

• (This terminates the 1st iteration)

Bellman-Ford (Moore) Algorithm – Exercise 3

D F

B

Α

s

C

E

-1

-8

-3 -35

2

1

0

8

6

4

3

9

3

4

+∞

4

0

#3

#1
#5

#12

#7

#6

#9#8

#2

#4

#11

#10

• Iteration 2, Edge #2

1

2

Bellman-Ford (Moore) Algorithm – Exercise 3

D F

B

Α

s

C

E

-1

-8

-3 -35

2

1

0

8

6

4

3

9

3

4

+∞

2

0

#3

#1
#5

#12

#7

#6

#9#8

#2

#4

#11

#10

• Iteration 2, Edge #4

1

11

Bellman-Ford (Moore) Algorithm – Exercise 3

D F

B

Α

s

C

E

-1

-8

-3 -35

2

1

0

8

6

4

3

9

3

4

11

2

0

#3

#1
#5

#12

#7

#6

#9#8

#2

#4

#11

#10

• Iteration 2, Edge #7

1

3

Bellman-Ford (Moore) Algorithm – Exercise 3

D F

B

Α

s

C

E

-1

-8

-3 -35

2

1

0

8

6

4

3

9

3

3

11

2

0

#3

#1
#5

#12

#7

#6

#9#8

#2

#4

#11

#10

• Iteration 2, Edge #8

1

2

Bellman-Ford (Moore) Algorithm – Exercise 3

D F

B

Α

s

C

E

-1

-8

-3 -35

2

1

0

8

6

4

3

9

3

2

11

2

0

#3

#1
#5

#12

#7

#6

#9#8

#2

#4

#11

#10

• Iteration 2, Edge #9

1

7

Bellman-Ford (Moore) Algorithm – Exercise 3

D F

B

Α

s

C

E

-1

-8

-3 -35

2

1

0

8

6

4

3

7

3

2

11

2

0

#3

#1
#5

#12

#7

#6

#9#8

#2

#4

#11

#10

• Iteration 2, Edge #12

1

-1

• (This terminates the 2nd iteration)

Bellman-Ford (Moore) Algorithm – Exercise 3

D F

B

Α

s

C

E

-1

-8

-3 -35

2

1

0

8

6

4

3

7

3

2

11

2

0

#3

#1
#5

#12

#7

#6

#9#8

#2

#4

#11

#10

• Iteration 3, Edge #4

-1

9

Bellman-Ford (Moore) Algorithm – Exercise 3

D F

B

Α

s

C

E

-1

-8

-3 -35

2

1

0

8

6

4

3

7

3

2

9

2

0

#3

#1
#5

#12

#7

#6

#9#8

#2

#4

#11

#10

• Iteration 3, Edge #7

-1

1

Bellman-Ford (Moore) Algorithm – Exercise 3

D F

B

Α

s

C

E

-1

-8

-3 -35

2

1

0

8

6

4

3

7

3

1

9

2

0

#3

#1
#5

#12

#7

#6

#9#8

#2

#4

#11

#10

• Iteration 3, Edge #12

-1
-2

• (This terminates the 3d iteration)

Bellman-Ford (Moore) Algorithm – Exercise 3

• No edges are relaxed at the 4th iteration

• The algorithm terminates! (The red number next to each node

denotes the length of the shortest path from s to that node)

D F

B

Α

s

C

E

-1

-8

-3 -35

2

1

0

8

6

4

3

7

3

1

9

2

0

#3

#1
#5

#12

#7

#6

#9#8

#2

#4

#11

#10
-2

Homework

• What will happen if the weight of edge BF is equal to 2?

D F

B

Α

s

C

E

-1

-8

-3 -32

2

1

0

8

6

4

3

Bellman-Ford (Moore) Algorithm – Another Example

• Let Α be the origin

• The number next to each node represents the length of the

shortest path from A

Α

Β

Γ

Δ

Ε
-1

4

3

1

2

2

5

-30

-1

1

2

-2

