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Abstract

Bayesian portfolio construction has received large attention since it was first advocated

in form of the Black-Litterman approach. This Bayesian model aims at investors holding

an arbitrary, well balanced and – according to their preferences – quasi optimal portfolio,

but are keen to enhance the respective by considering quantitative return predictions. We

show that weighting factors required for the mixed estimation can be directly derived from

predictive regressions in form of goodness-of-fit measures, which enables an unambiguous

determination of certainty levels. The model can self-adjust rapidly to changing market

conditions and is potentially able to generate and preserve excess return on the long-run

over an initial portfolio whilst restraining additional downside risk. Supporting results based

on a robustly constructed simulation framework also reveal that the increasing number of

correlation breakdowns and the variance of correlation between assets and predictor drives

average excess returns towards, but never below zero. An empirical setting initialized with

a global portfolio and the Baltic Dry Index as a single, universal predictor confirms the

findings.
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1 Introduction

Active management of portfolios and its possible benefits over passive strategies has been

extensively discussed for years and it is obvious that two camps have emerged scrutinizing

this matter. A vast number of asset managers believe in their abilities to identify mispriced

assets and, thereby, aim to generate an excess return over a passive benchmark. However,

in reality sooner or later most market participants are faced with the fact that long-term

outperformance over the aggregated index is only reserved for a handful of managers and

the majority cannot persistently generate alpha (Jensen, 1968; Carhart, 1997; Kosowski,

Timmermann, Wermers, & White, 2006). The actual skill a manager has in picking the right

assets is most relevant during market downturns. ’Riding the wave’ in market boom phases

can hardly be perceived as skill, therefore, the containment of risk in recessions has to be the

main factor for identifying a managers ability. Enhanced portfolio management or enhanced

indexing is a mix of both active- and passive management, where the investors accept a

certain tracking error aiming to generate a small degree of alpha whilst not encountering

additional downside risk relative to the passive benchmark (Fabozzi, 1999).

Bayesian portfolio construction is a natural choice for the constitution of enhanced opti-

mal portfolios as it is a mixed estimation procedure allowing for two sources of information

being combined. The Black-Litterman (BL) approach is arguably the most prominent ex-

ample of Bayesian portfolio selection and resolves the issue of corner solutions commonly

experienced under short-selling constraints with Markowitz optimization (Fabozzi, Focardi,

& Kolm, 2006). Although this model can be interpreted as an extension to the BL model we

intentionally stand back from closely referencing the BL approach as the intuition behind

both models is contrary. Crucially, the central feature of incorporating subjective views and

confidences is removed and return estimates and respective certainty levels are added from

a linear regression. By deriving certainty levels towards predictions directly from a linear

regression in form of the goodness-of-fit measure, we implicitly account for estimation errors

in the optimization procedure. This is a key feature disregarded by standard optimizers

(Fabozzi et al., 2006). Furthermore, we do not restrict application to implied equilibrium re-

turns but allow the model to be adopted to an arbitrary portfolio and predictor. Thereby, we

provide an add-on to an investors existing portfolio – including, but not limited to, a passive

benchmark – in form of enhancing the respective by means of quantitative predictions.

In an empirical setting we apply the Baltic Dry Index (BDI) as a universal predictor and

test its predictive power. Furthermore, a simulation is conducted to test for robustness of the

introduced methodology and show that enhanced optimal portfolios can conserve generated

excess return over the long-run and restrain downside risk measured by second order lower

partial moments.

2 The Model

We consider an investor holding an arbitrary and – according to their preferences – opti-

mal portfolio, but are keen to enhance the respective by considering quantitative return

predictions. We propose an approach on which additional quantitatively estimates can be

incorporated, thereby, offering upside return potential whilst controlling for risk in form of

lower partial moments. Fundaments of the model rely on the procedure of Bayesian portfo-

lio construction. First the implied returns from the underlying portfolio are backed out via

a mean-reversion procedure. Next our return estimates and certainty levels are generated

based on an arbitrary quantitative predictor. The revised return vector (posterior) is de-
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rived via the mixed estimation procedure according to the weighting factors Ω and τ . In the

following lower-case letters refer to scalars, bold-face letters denote vectors and upper-case

symbols stand for matrices.

Prior

As for this model the prior can be any arbitrary portfolio defined as optimal, given

investors specific preferences. We make use of the reverse optimization procedure to back

out expected asset returns implied by the weights of the investors current optimal portfolio

given by z = γΣw (Black & Litterman, 1992). We denote the vector of implied optimal

portfolio returns (z) as a function of investors risk aversion (γ), covariance matrix (Σ) and

the vector of portfolio weights (w).

We specify the covariance matrix based on a rolling window of 120 months of historical

stock returns. The risk aversion factor γ is set to one.1 The resulting distribution of the prior

is N ∼ (z, τΣ). Where the scalar τ is scaling factor towards the covariance matrix, which

reflects the uncertainty in our return estimates and serves as a weighting factor for the mixed

estimation procedure.2 The scaling factor τ enables the investor to specify the acceptable

degree of deviation of the posterior from the prior. A small value implies a posterior closely

tracking the prior and vice versa. We specify τ as being close to 0 given the optimality of

the existing portfolio.3

Quantitative Predictions

Performance of optimized portfolios rely upon generating reasonably good estimates of

future asset returns and their covariance. Hereby we focus on the former aspect and attempt

to estimate monthly returns for each asset i of the investment set defined by the investors

existing portfolio. Methodological framework of generating quantitative predictions (r̂) relies

on a classical ordinary least squares approach of the form:4 rt+1 = α + βft + εt+1. This

model allows for any arbitrary factor (f) to be applied as a source of return forecasts.5 In

order to update the vector of prior return expectations according to quantitative predictions,

one requires a quantification of the accuracy of predictions. We propose a method to derive

confidences towards quantitative predictions directly from the linear regression and thereby

provide an intuitive relation between the certainty levels and expected returns.

Hereto, we apply the goodness-of-fit measures to specify accuracy of predictions and plug

1We set risk aversion to 1 as the reverse optimization procedure is applied to an already optimal portfolio,
which implies that investors risk aversion is already accounted for. Respectively, expected returns derived from
the optimal portfolio are not pre-scaled when entering the Bayesian framework and, therefore, have equal weight
relative to quantitative predictions.

2Although, the scaling factor τ of this study enters the procedure the same way as in the original Black-
Litterman model, the intuition behind it is different. In contrast to standard versions of the BL model who
commonly struggle with the specification of τ and its intuition, we explicitly incorporate τ as tool for investors
to specify the acceptable degree of deviation from their existing optimal portfolio.

3Alternatively, a specification of τ = 1 implies an investor being indifferent between prior and quantitative
predictor and, therefore, both enter the updating procedure with equal weights. A value specification of τ → ∞
implies an investor being more confident about the quantitative predictions relative to the implied return estimates
of his portfolio. Such an investor should reconsider his ’optimal’ portfolio. Concluding, a specification of τ → 0
is most reasonable in this setting, given the optimality of the underlying portfolio.

4Although we make use of the regular OLS approach, instead of classical standard errors we use adjusted
measures as proposed by Newey and West (1987) to overcome heteroscedasticity of error terms during time series
regressions.

5The only constrained regarding the predictor in the linear- or multiple regression is that the Gauss-Markov
assumption have to be fulfilled.
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them into a certainty matrix Ω, entailing a specific level of certainty for each asset. We

utilize the adjusted R2 as a measure unrelated to the number of independent variables in

the equation and point out that it comes along with a virtually standardized 0-1 scale.6

This enables us to unambiguously determine the quality of estimates and as such offers an

intuitive solution for specifying elements of the Ω. Fabozzi et al. (2006) also provide a brief

theoretical introduction on incorporating factors models in a Bayesian setting but specify

elements of Ω according to the variance of residuals. However, their methodology does not

provide an intuitive scale compared to adjusted R2 and applicability has not been tested. A

mathematical depiction of the connection between their approach and the one applied in this

study is provided in appendices. Furthermore, Connor (1997) applies a shrinkage approach

to the predictive regression in a Bayesian portfolio setting by recalibrating the regression

coefficient according to R2. Thereby he shrinks estimated coefficients towards zero, which

is intuitive given the application to the market portfolio and respective market efficiency.

However, both approaches deviate from the one at hand in their implementation and intu-

ition, respectively.

Ωt =


1−R2

1,t 0 · · · 0

0 1−R2
2,t · · · 0

...
...

. . .
...

0 0 · · · 1−R2
i,t


We calculate the additive inverse of R2 and add it to 1 in order to make the values appropriate

to the nature of certainty. Elements of Ω take large values for unreliable predictions, while

small values correspond to less noisy forecasts. As a consequence elements of Ω indicating

noisy predictions exhibit low effect on the enhanced optimal portfolio and vice versa. We

calibrate Ω for every out-of-sample period.

Posterior

Taking the prior return distribution N ∼ (z, τΣ) as the basis we can subjoin the ex-

pected returns derived from predictions given by N ∼ (r̂,Ω). Applying a rearranged version

of Black and Litterman (1992) according to Da Silva, Lee, and Pornrojnangkool (2009, p.3)

and adjusting the respective to meet the properties of this study, we derive the posterior

return vector as follows:7

z∗ = z + Σ

[
Ω

τ
+ Σ

]−1

· (r̂− z)

The revised return vector constructed as a weighted average of the prior and quantitative

6The model can be extended to a multi-factor form in order to increase predictive power. Therefore, we make
use of the adjusted R2 measure as correction for the degrees of freedom is especially necessary when performing this
approach with multifactor forecasting. With regards to the standardized scale one has to differentiate between the
standard- and adjusted R2 measure, later accounting for the number of explanatory terms. Where the standard
form always stays between 0-1 guaranteeing the standardized scale, the other can go out of bounds, but offers
more accuracy on the explanatory power of the regression. Ultimately, this leads to a slight reconsideration of
the range of feasible τ values.

7In contrast to the standard form of the BL model, we drop identity matrix P which assigns the views to the
respective assets. Given that we only have absolute return estimates on all assets at all times, we can drop this
matrix. In the periods where the predictor yields weak predictions on certain assets, the according element of Ω
will get close to 1 (i.e. no influence on the optimal portfolio), hence eliminating the need for the identification
matrix.
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predictions according to the weighting factors τ and Ω. Recalling, a value specification for

τ close to zero refers to a low degree of uncertainty regarding prior return estimates. As

we define the prior to be an optimal portfolio, a high certainty in the respective is implied.

Consequently, the uncertainty in the prior is smaller compared to the quantitative predictions

and, therefore, the enhanced optimal portfolio will track the underlying prior closely.

In a final step the updated return expectations are fed into the initial portfolio optimizer

to generate the portfolio weights of the enhanced optimal portfolio (EOP). This is achieved

by rearranging the formula for deriving the prior in order to back out the revised portfolio

weights: w∗ = (γΣ)
−1

z∗. We chose to apply the initial optimizer in order to derive a clear

picture of the contribution from our quantitative predictions and certainty levels. Thereon,

we analyze whether EOP’s are capable of generating sustainable excess return over the initial

(prior) portfolio. Furthermore, we evaluate whether this excess return comes at the cost of

additional downside risk relative to the underlying portfolio. Due to unequal distribution

characteristics we measure risk by second order raw and central lower partial moments (LPM)

based on Nantell and Price (1982). We are particularly interested in the differences between

the portfolios: ∆LPM{h,g}(r) =
∫ h
−∞(r−h)2fEOP (r) dr−

∫ g
−∞(r−g)2fOP (r) dr. We denote

h and g to represent the respective target return, while j denotes the order of LPM.

3 Simulation

First we show robustness of the model by applying the model to a simulated data set in order

to overcome the potential of experiencing empirical results by chance due to the application

of a single predictor to a limited observation period of selected indices. Consequently, the

setup of this simulation study is as arbitrary as possible – in terms of generating asset returns

and the predicting factor – in order to identify an devaluate the deterministic factors of the

model.

Setup and Sampling Properties

We calculate enhanced optimal portfolios based on two equally-weighted assets (with

returns rA and rB). Quantitative forecasts for both assets are generated according to a

standard OLS prediction model. Independent variable f is a random series with arbitrary

first and second order moments. Both series rA and rB , as well as rA and f are simulated

based on bivariate normal distributions. We consider correlation breakdowns, leading to a

shift in moments as for the representation of genuine stock market crashes. Notation for

variables is given in subscripts – possibly in braces when multiple series involved –, while

parentheses in superscripts state breakdowns as total number of unique periods.

First we define correlation of assets A and B to follow a random walk process with mean

0.75 and upper and lower boundaries of 0.5 and 1, respectively. Furthermore, correlation of

asset A and predictor f is also characterized by a stochastic process with an arbitrary mean

and standard deviation that changes k−1 times after each breakdown and due to the nature

of correlation is bounded between -1 and 1. Random shocks of both models follow normal

distributions: η ∼ N (0, 0.01) and υ ∼ N (0, συ).

ρ{rA,rB},t = ρ{rA,rB},t−1 + ηt s.t. ρ{rA,rB},1 = 0.75 and 0.5 ≤ ρ{rA,rB} ≤ 1

ρ
(k)
{rA,f},t = ρ

(k)
{rA,f},t−1 + υt s.t. ρ

(k)
{rA,f},1 ∼ U(−1, 1) and |ρ(k)

{rA,f}| ≤ 1
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Now we are able to simulate observations rA and rB with covariance conditional on ρ{rA,rB}.

We set one asset to be riskier than the other with the following parameters: µrA , µrB = 0

and σA = 0.35, σB = 0.15.

〈rA, rB〉 ∼ N (κ,Σt) , with κ =

(
µrA
µrB

)
and Σt =

(
σ2
rA σ{rA,rB},t

σ{rA,rB},t σ2
rB

)

Finally, we generate individual moments for subperiods of predictor f in order to simulate

correlation breakdowns. Means are based on a normal distribution around 0, while standard

deviation – being strictly positive – follow a uniform distribution between 0 and 1. As such

we not only have a variance-covariance matrix (Θ) that is time-varying, but also first and

second moments are unique for k periods.

µ
(k)
f ∼ N (0, 1) and σ

(k)
f ∼ U(0, 1)

〈
rA, f

(k)
〉
∼ N

(
ξ(k),Θ

(k)
t

)
, with ξ(k) =

(
µrA
µ

(k)
f

)
and Θ

(k)
t =

(
σ2
rA σ

(k)
{rA,f},t

σ
(k)
{rA,f},t σ

(k)
f

2

)

Hereafter, arbitrary asset returns and a random predictor draw on varying forecasting ac-

curacy. Factor f is to deliver ’forecasts’ for both series rA and rB based on two univariate

OLS models. Deterministic parameters of the model are the number of correlation break-

downs and variance of shocks (συ) affecting correlation of coefficient between rA and f . A

sensitivity analysis of the two parameters is conducted with regards to the impact on excess

return of EOP relative to the initial investors portfolio. Given this set-up, for any possible

combination we run 100 simulations of 1’200 months of random asset returns each.

Results

Taking a random sample from the set of simulations Figure 1 indicates a representative

case illustrating the models characteristics. From correlation levels we can assert the quality

(goodness-of-fit) of our predictor with respect to the two assets. Given a high level of absolute

correlation our predictor will have high predictive power and consequently our certainty levels

assigned to the derived predictions will be high leading to a stronger tilt in portfolio weights

and vice versa. This relation is clearest for the high correlation level in period two. EOP

starts generating outperformance – after a calibration period identical to the estimation

window – reflecting the increase in predictive quality and rising certainty levels derived from

adjusted R2.

Cumulative return plot reveals a constant widening of the gap until the second correlation

breakdown 800 periods into the sample window. At this point the correlation drops to

around 0 and consequently our predictor is jimmied for the remaining months. At this

point, the significant contribution of our model comes into place and clarifies what makes

this portfolio an enhanced optimal portfolio. By definition, the EOP cannot be restricted

to exhibit temporarily modest negative returns subsequent to the correlation breakdown,

during recalibration. Given the significant correlation breakdown from almost 1 to 0, the

model adapts fast by means of a drop in certainty levels assigned to the predictions thereby

tilting the EOP towards its prior. Hence, the model is able to preserve the outperformance

previously generated even during phases where the quantitative predictor is weak. This is

clearly reflected by the constant gap over remaining 400 months where weights of the EOP
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Figure 1: This figure is a composition of: (1) cumulative returns of an equally-weighted portfolio, (2)
monthly outperformance of the EOP, (3) cumulative out-performance and (4) correlation and respective
breakdowns between the dependently simulated asset A and predictor f . In this setting we enforce k = 3
correlation breakdowns, therefore, generating three periods of different correlation means equal to -0.4, +0.9
and 0. We set the variance of correlation to 0.05 for all levels to ensure simulated correlation is close to the
set mean for each period.

are approximately identical to the optimal portfolio. This is a major improvement over

standard forms of the BL model incorporating subjective certainties subject to investors

irrational behavior. Especially overconfidence – commonly observed with financial analysts

– and hesitation to revise personal opinions contribute to this pattern (?, ?).

Next, we examine the sensitivity of EOP’s regarding the previously mentioned two de-

terministic parameters. All other parameters are held constant and are identical to the

deliberations made before. The outcome of the sensitivity analysis is illustrated in Figure 2.

We check for robustness of our assertion that an portfolio optimized by means of this method

will generate on average excess return without the burden of additional downside risk – in

form of raw lower partial moments – relative to the optimal portfolio. We prove that these

features prevail even when accounting for correlation breakdowns up to a yearly frequency

along with rapidly repeating shifts in correlation between predictor and assets.

On average positive excess return under both parameter variations can be reported. The

surface plot is positive for all variations of either parameter and across all simulations, as

indicated by the vertical axis. Right-horizontal axis represents a variation in the variance of

correlation between predictor and assets and, therefore, reflects the predictive power of the

indicator. Along an increase in variance of correlation, a decline in excess return is observ-

able. This is reasonable as an increase in variation of correlation lowers the predictive quality

of the factor. Furthermore, sensitivity towards correlation breakdowns is also according to

our expectations. As for the variance of correlation, an increase in breakdowns leads to a

reduction in excess return. Overall, we show that the model is sensitive to the number of

correlation breakdowns and variance of correlation between predictor and assets. However,

excess returns are strictly positive on average for all tested combinations with a clear conver-

gence towards 0. In terms of additional returns this means an investor can never be worse off

allocating according to the enhanced optimal portfolio. This is confirmed when accounting

for lower partial moments, where simulation results prove ∀k, συ : max[∆LPM{h,g}(r)] < 0

for {h, g} = {0, 0} and {E[r′w∗], E[r′w]}.
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Figure 2: The surface plot shows 10’000 simulation of 100 per parameter combination. Each portfolio
simulation is made up of 1’200 months of random asset returns. We depict values for variance of correlation
(συ) on the right-horizontal axis, number of correlation breakdown (k − 1) on the left-horizontal axis and
excess return of EOP over the initial (prior) portfolio on the vertical axis. Two graphs to the right are
extended sensitivity plots towards the two deterministic parameters.

4 Empirical Evidence

Finally, we test the described approach on historical observations to provide empirical evi-

dence. This is of particular interest as the simulation setting required normal distribution

throughout, while stock returns might not exhibit this property at all times.

Data

In the empirical setting we update a naive 1/N portfolio according to quantitative predic-

tion derived from a single global predictor, the Baltic Dry Index (BDI). We apply 3-month

BDI growth rates to obtain forecasts for various reasons. Firstly, former has been empiri-

cally tested and confirmed to be a reliable global equity market predictor, which allows us to

implement them it a world equity index portfolio.8 Furthermore, as a universal predictor it

exhibits fairly constant correlations across our indices and, therefore, allows us to limit the

number of predictors for simplicity. Finally, it has a uniquely high frequency and also offers

decent history for the last 25 years.

As part of this empirical study we apply 37 USD denominated MSCI country indices for

an observation period from April 1985 to March 2012 as dependent variables in the predictive

regression. Table 1 presents a detailed description of the dataset. Alongside an intercept, we

estimate different factor coefficients for every market i at every time t. In order to find the

best fitting model across the investigated markets, once again we follow Bakshi, Panayotov,

and Skoulakis (2011) and initialize regressions with a 120-month in-sample window. Hence we

conduct our calculations recursively until the last observation, which enables us to generate

forecasts for 105 and 137 months for emerging and emerged markets, respectively. The

following regression is applied: ri,[t→t+1] = αi + βi g[t−3→t] + εi,t+1. BDI growth rates are

included with one lag as an independent variable into the model. Its effect on the dependent

variable, excess returns (ri), is positive across all markets. According to common literature

we set the lag size at 3 thus p-values are also calculated accordingly.

8We form a world portfolio composed of the G7 markets, 14 emerged markets and 11 emerging markets.
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obs mean std dev skew kurt max min ρgt,rt+1

Predictor
Baltic Dry Index 320 0.018 0.557 -1.792 19.710 0.671 -1.330 -

Regional Indices
EAFE 320 0.049 0.159 -0.875 5.271 0.107 -0.211 0.179
Europe 320 0.046 0.183 -0.594 4.184 0.138 -0.226 0.145
Emerging Markets 320 0.065 0.185 -0.844 5.164 0.133 -0.240 0.163
G7 288 0.080 0.247 -1.019 5.926 0.167 -0.346 0.175
World 320 0.046 0.158 -0.761 4.843 0.115 -0.203 0.179

G7 markets
Canada 320 0.057 0.201 -1.130 7.555 0.193 -0.315 0.178
France 320 0.067 0.222 -0.530 4.055 0.186 -0.255 0.127
Germany 320 0.059 0.246 -0.709 4.716 0.212 -0.280 0.148
Italy 320 0.008 0.256 -0.100 3.604 0.258 -0.270 0.107
Japan 320 0.007 0.224 0.013 3.485 0.211 -0.219 0.064
UK 320 0.059 0.184 -0.523 4.886 0.138 -0.248 0.158
USA 320 0.057 0.160 -1.028 6.213 0.120 -0.245 0.186

Emerged markets
Australia 320 0.078 0.248 -2.166 18.000 0.164 -0.590 0.130
Austria 320 0.035 0.276 -1.055 8.326 0.227 -0.463 0.187
Belgium 320 0.072 0.227 -1.549 12.445 0.228 -0.456 0.136
Denmark 320 0.085 0.206 -0.734 5.454 0.182 -0.297 0.166
Greece 288 0.014 0.368 0.232 6.212 0.443 -0.458 0.115
Hong Kong 320 0.081 0.281 -1.309 11.677 0.284 -0.570 0.077
Ireland 288 -0.007 0.234 -0.982 5.533 0.163 -0.303 0.216
Netherlands 320 0.070 0.200 -1.127 6.203 0.134 -0.290 0.138
Norway 320 0.066 0.281 -1.191 7.027 0.194 -0.407 0.134
Portugal 288 -0.009 0.232 -0.339 4.665 0.246 -0.305 0.092
Singapore 320 0.044 0.277 -1.345 10.470 0.226 -0.532 0.138
Spain 320 0.090 0.249 -0.508 4.752 0.220 -0.292 0.092
Sweden 320 0.100 0.265 -0.587 4.486 0.227 -0.311 0.149
Switzerland 320 0.085 0.182 -0.510 4.028 0.138 -0.200 0.134

Emerging Markets
Argentina 288 0.107 0.578 -0.265 13.394 0.924 -1.083 0.060
Brazil 288 0.128 0.512 -1.018 8.583 0.442 -0.877 0.111
Chile 288 0.132 0.250 -0.669 5.579 0.204 -0.348 0.111
Indonesia 288 0.080 0.474 0.159 7.635 0.669 -0.523 0.174
Korea 288 0.031 0.374 0.170 5.589 0.530 -0.377 0.139
Malaysia 288 0.048 0.300 -0.215 6.965 0.402 -0.364 0.088
Mexico 288 0.149 0.324 -1.039 6.337 0.255 -0.407 0.109
Philippines 288 0.032 0.318 -0.161 4.660 0.357 -0.350 0.126
Taiwan 288 0.018 0.365 -0.112 4.399 0.382 -0.415 0.136
Thailand 288 0.041 0.389 -0.552 5.223 0.356 -0.420 0.101
Turkey 288 0.056 0.561 -0.022 4.096 0.573 -0.536 0.167

Table 1: Descriptive statistics presented here are based upon monthly excess returns denoted in US dollars
($) provided by MSCI. The sample contains in most cases returns between 5/1/1985 and 12/31/2011,
except for emerging and a few additional markets where data is only available from 2/1/1988. Columns are
denoted as follows: Number of observation (obs), mean indices (mean), standard deviation of indices (std
dev), skewness of time series (skew), kurtosis of time series (kurt), highest monthly change (max), lowest
monthly change (min) and correlation coefficient of the Baltic Dry Index with the respective index.

Predictive Quality of BDI

Table 2 summarizes findings related to in- and out-of-sample estimation statistics. Addi-

tionally, figures in appendices provide graphical insight on the cross-sectional and time-series

characteristics of BDI. Coefficients of BDI growth rates are fairly stable across markets, es-

pecially when looking at the sample excluding emerging markets. As expected, g has a

throughout positive loading and varies around 0.02 - 0.03. In case of emerging markets the

pattern turns out to be more volatile – indices for e.g. Indonesia or Turkey are well above

the average, while Argentina or Mexico are significantly below. Generally small coefficients

are related to the high standard deviation of the shipping index, thus a 1% change in g

corresponds to a few basis point changes in future returns. These results are in line with

Bakshi et al. (2011). When investigating the progress of average loadings throughout the

timeframe we find a steady increase during the first quarter of the observation window. A

subsequent jump is due to the sudden availability of additional – mostly emerging markets

– data, which generally come along with significantly higher β coefficients. We also find a

massive outlier around 2008, which can be explained by the enormous decrease of the BDI

index during the financial crisis.

Investigating out-of-sample R2 across indices we repeatedly see a changing mean when

comparing emerged and emerging markets. These results are in-line with our findings for

in-sample R2 in terms of decreasing explanatory and forecasting power compared to previ-

ous literature. Average measures deviate in the positive range around 1.5-2 for developed

9



obs β̄OLS 1 − p̄OLS R̄2 R2
OS RMSE HR θlogit Chow F

Regional markets
World 137 0.0222 0.82 1.3 3.9 0.5778 0.52 14.1870 2.1571
EAFE 137 0.0200 0.73 0.8 2.0 0.6330 0.51 40.8220 1.3502
Europe 137 0.0225 0.77 1.2 2.7 0.7002 0.47 28.4811 2.4655*
Emerging 105 0.0437 0.95 1.9 2.2 0.7462 0.58 27.0902 0.7199
G7 137 0.0217 0.82 1.3 4.2 0.5600 0.51 12.0287 2.2304

G7 markets
Canada 137 0.0298 0.83 1.4 3.1 0.7716 0.50 103.3490 0.6529
France 137 0.0191 0.69 0.5 0.7 0.8028 0.51 8.8319 2.4837*
Germany 137 0.0269 0.74 0.8 1.6 0.9225 0.47 7.3956 3.3133**
Italy 137 0.0186 0.66 0.4 0.8 0.8441 0.49 12.8306 1.4278
Japan 137 0.0128 0.52 -0.2 -0.9 0.5942 0.49 164.6738 0.5802
UK 137 0.0167 0.66 0.8 4.5 0.5989 0.48 130.6183 1.4603
USA 137 0.0229 0.84 1.3 5.1 0.5553 0.55 10.8781 3.2268*

Emerged markets
Australia 137 0.0126 0.55 0.4 1.6 0.7930 0.55 47.7716 0.1721
Austria 137 0.0305 0.70 1.4 3.2 1.0341 0.53 15.4970 2.2551
Belgium 137 0.0223 0.72 0.7 -0.9 0.9114 0.46 27.4830 2.7203*
Denmark 137 0.0414 0.98 2.2 1.6 0.7643 0.50 54.9900 0.8324
Greece 105 0.0308 0.69 0.5 0.4 1.1311 0.58 53.4409 5.5192***
Hong Kong 137 0.0145 0.53 -0.1 -0.2 0.7678 0.53 396.8115 0.4118
Ireland 105 0.0370 0.91 2.4 6.0 0.7969 0.52 97.5956 5.3123***
Netherlands 137 0.0246 0.79 1.0 0.4 0.8184 0.47 25.8675 3.0076*
Norway 137 0.0393 0.83 1.1 0.4 1.0470 0.48 96.3826 0.1829
Portugal 105 0.0324 0.87 1.0 -2.5 0.6957 0.52 125.7992 1.8340
Singapore 137 0.0384 0.88 0.7 1.3 0.8231 0.50 31.5491 0.0612
Spain 137 0.0148 0.63 0.2 -1.4 0.8885 0.55 51.2313 1.4854
Sweden 137 0.0427 0.91 1.2 1.5 1.0064 0.49 105.9418 1.2457
Switzerland 137 0.0193 0.74 0.7 2.5 0.5853 0.52 -59.5243 3.0126*

Emerging markets
Argentina 105 0.0019 0.43 -0.3 -2.0 1.1355 0.57 593.6874 0.3595
Brazil 105 0.0717 0.96 0.7 -2.1 1.0227 0.49 270.2059 0.0878
Chile 105 0.0456 0.94 1.5 -6.3 0.7269 0.55 112.1156 0.2606
Indonesia 105 0.1063 0.99 2.4 -1.5 1.0586 0.59 5.5817 0.1566
Korea 105 0.0633 0.97 1.3 -0.2 0.9134 0.56 -27.7139 0.2482
Malaysia 105 0.0415 0.92 0.5 -5.5 0.5645 0.58 20.2893 0.4581
Mexico 105 0.0069 0.43 0.1 -0.2 0.7488 0.56 -28.2501 1.8180
Philippines 105 0.0472 0.92 1.0 1.9 0.7539 0.59 -27.8998 0.0061
Taiwan 105 0.0567 0.94 1.0 3.4 0.7391 0.52 15.6168 0.2642
Thailand 105 0.0668 0.96 1.1 -6.3 0.9151 0.56 23.5253 0.5401
Turkey 105 0.1387 0.99 2.8 -4.3 1.2880 0.57 7.6802 0.0014

Table 2: Estimation statistics are calculated for every index based upon all available observations with
a recursive procedure. Description of columns is to be interpreted as follows: Number of out-of-sample
observations (obs), average coefficient of BDI predictor (β̄), average certainty of BDI predictor (1 − pOLS),
average adjusted R2, out-of-sample R2 (R2

OS), root mean squared error (RMSE), hit ratio (HR), coefficient
of logit regression (θ) and F-statistics of Chow’s structural break test (Chow F ). Negative values of logit
coefficients are denoted in parentheses and significant F results are marked (*< 0, 1; **< 0.05, ***< 0.01).

countries, while for emerging markets out-of-sample statistics of BDI tend to be significantly

lower. Moreover, a geographical and economical break is noticeable. Broad market indices

– such as the MSCI World index, G7 index or the United States stock market – achieve

highest results and can be acceptably forecasted by the BDI. Additionally, North American

and European countries with leading macroeconomic and consumption indicators reach a

significantly higher average value. Out-of-sample sample results against time provide the

clearest picture about BDI as a predictor for excess returns. Hereby we differentiate between

two groups based on the number of available observations and contrary to previous depic-

tions we do not combine series with various length. This is inevitable as indices with less

observations, which are mostly related to emerging markets, show a greatly different pattern

and a combined figure would be strongly biased by the outliers. We also provide root mean

squared errors (RMSE), whereby we measure squared deviation of our forecasts from realized

values: RMSE =
√

1
T

∑T−1
t=0 (rt+1 − r̂t+1)2. As this measure partially corresponds to the

nominator of the out-of-sample R2, we only calculate it to solely observe estimation errors.

Furthermore, due to its common application it enables us to make our predictor comparable

with other studies. We can identify a pattern where residuals are on average smaller for

diversified regional indices and G7 markets.

With the help of logistic regressions we finally investigate the influence of adjusted R2

results on the direction of upcoming market movements, hence the relationship between in

in-sample and out-of-sample statistics. This is crucial for this analysis as negative results

would undermine a linkage between certainty levels and goodness-of-fit of the quantitative
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predictor. We find positive effects on odds ratios. 33 out of 37 of the tested indices exhibit a

strong positive effect on hits when R2 statistics are increasing. This supports our proposed

procedure and allows us to construct our enhanced optimal portfolio based on BDI derived

predictions.

Portfolio Characteristics

This section discusses the results of applying the BDI as the quantitative predictor to

the mixed estimation introduced in this study to derive an enhanced optimal portfolio in a

global equity portfolio setting. The performance of the EOP relative to the prior is presented

in Figure 3. The first depiction of Figure 3 shows the cumulative return of both portfolios

across an investment period of 200 months. As we can see the EOP can generate a small

degree of excess return over the observation period, where outperformance steadily increases

over time and can be retained.

1995 1998 2001 2005 2008 2011
0

0.5

1

1.5

Equally weighted vs Enhanced optimal portfolio

1995 1998 2001 2005 2008 2011

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Performance difference between portfolios

1995 1998 2001 2005 2008 2011
0

0.05

0.1

0.15

Cumulative performance difference between portfolios

Figure 3: This figure provides a graphical presentation of the results in form of a composite of three sepa-
rate plots: (1) cumulated portfolio performance, (2) Performance difference between optimal and enhanced
portfolio and (3) cumulative performance difference.

Additional illustrations present monthly return differences, as well as the cumulative

of the respective. Whilst the monthly outperformance is relatively stable until 2008, a

significant shock is observable during the market downturn caused by the financial crisis. This

is even more striking when looking at the cumulative return differences, where a significant

increase is observable. Predictive power of BDI – in terms of adjusted R2 – shows the same

pattern as the cumulative return depiction. The previous analysis of the BDI as a global

predictor has already shown that its goodness-of-fit varies significantly over time and cross-

sectionally. Given the overall low level of goodness-of-fit, scaling factor τ was increased to

0.5 in order to provide a clear basis for evaluation. Overall results show a positive trend

and accumulation of excess return, which can be retained at a high level. These results

are in-line with the simulation analysis and confirm the validity of this model on empirical

grounds. Furthermore, looking at downside risk in form of raw and mean lower partial

moments even reflecting a decrease of 0.02 for raw and central LPM’s. This again confirms

that the methodology at hand can generate excess return relative to the prior, whilst avoiding

additional downside risk on the enhanced optimal portfolio.
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5 Conclusion

Given the accordance of empirical and simulated results we can prove that – given any

arbitrary quantitative predictor – optimal portfolios can be enhanced in terms of excess

return without the burden of additional downside risk, measured as second order lower

partial moments. This is achieved by employing a Bayesian framework and allowing any

existing portfolio to be enhanced by means of quantitative predictions. We show that the

certainty regarding the predictions can be directly derived from a linear regressions in form

of adjusted R2 and, thereby, providing a implicit dependency between quantitative forecasts

and their weight on the mixed estimation. Consequently, the model self-adjusts rapidly to

changing market conditions by tilting weights towards the underlying portfolio to protect

investors from experiencing additional downside deviation relative to their prior.

In an empirical study we analyze the Baltic Dry Index in terms of predictive power and –

given its practicability – apply it as a universal predictor in a global equity index portfolio.

Consequently, we are able to show that historically generated excess return on the basis of

quantitative predictions can be preserved over the long-run whilst not exposing the investor

to additional downside risk. Results prove to be robust and can be confirmed in a simulation

setting.

Application of our method includes, but is not limited to, the field of enhanced indexation.

The advantage in this approach is the possibility to specify any index as the basis for deriving

the prior and enhancing the respective by means of quantitative predictions to generate excess

return. At the same time investors are not exposed to additional downside risk, but only

benefit from forecasts where the models predictive power is strong. Given the models closed

form, the implementation overheads are low and the investors acceptable degree of deviation

from the underlying index can be specified via the weighting factor τ .
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A Appendix

A.1 Specification of certainty Matrix Ω

By choosing a classical ordinary least squares (OLS) estimator it is easy to show the rela-

tionship between high certainty levels and reliable estimations. For simplicity we use assume

regression equations with the same number of independent variables k across indices and

also consider time series with the equal lengths.

Ωt =


1−R2

1,t 0 · · · 0

0 1−R2
2,t · · · 0

...
...

. . .
...

0 0 · · · 1−R2
i,t

 (1)

=


1/(t−k)

∑t
j=1 ε

2
1,j

1/(t−1)
∑t

j=1(r1,j−r̄1)2
0 · · · 0

0 1−R2
2,t · · · 0

...
...

. . .
...

0 0 · · · 1−R2
i,t

 (2)

=


t−1
t−k [

∑t
j=1(r1,j − r̄1)2]−1

∑t
j=1 ε

2
1,j 0 · · · 0

0 1−R2
2,t · · · 0

...
...

. . .
...

0 0 · · · 1−R2
i,t

 (3)

Once we substitute the formula for adjusted R2 into the equation we can back out a matrix

that represents diagonal elements of the covariance matrix of the returns, thus its variances.

=
1

t− k


σ2

1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
i


−1

∑t
j=1 ε

2
1,j 0 · · · 0

0
∑t
j=1 ε

2
2,j · · · 0

...
...

. . .
...

0 0 · · ·
∑t
j=1 ε

2
i,j

 (4)

=
1

t− k
diag(Σ)−1


∑t
j=1 ε

2
1,j 0 · · · 0

0
∑t
j=1 ε

2
2,j · · · 0

...
...

. . .
...

0 0 · · ·
∑t
j=1 ε

2
i,j

 (5)

Last term of (5) is a matrix with the very elements we minimize during the OLS procedure

when predicting equity returns. As the variance and the scalar are predetermined by the

sample it is easy to see that our linear predictor singularly maximizes certainty by minimizing

Ω.

16



A.2 Restructuring the Black-Litterman equation

To isolate τ and Ω in the initial Black-Litterman equation we restructure the formula fol-

lowing closely Mankert (2006):

z∗ =
[
(τΣ)

−1
+ P ′Ω−1P

]−1 [
(τΣ)

−1
z + P ′Ω−1r̂

]
(6)

First we multiple (6) with τΣ and its inverse as an identity matrix:

=
[
(τΣ)

−1
+ P ′Ω−1P

]−1

(τΣ)−1(τΣ)
[
(τΣ)

−1
r̂ + P ′Ω−1z

]
(7)

=
[
I + τΣP ′Ω−1P

]−1[
r̂ + τΣP ′Ω−1z

]
(8)

Now we extend the second term by τΣP ′Ω−1P r̂ and its additive inverse:

=
[
I + τΣP ′Ω−1P

]−1[
r̂ + τΣP ′Ω−1z + τΣP ′Ω−1P r̂− τΣP ′Ω−1P r̂

]
(9)

=
[
I + τΣP ′Ω−1P

]−1[(
I + τΣP ′Ω−1P

)
r̂ + τΣP ′Ω−1 (z− P r̂)

]
(10)

Once again we multiple with an identity matrix, this time by Ω + P ′τΣP and its inverse:

=
[
I + τΣP ′Ω−1P

]−1

· · · (11)[(
I + τΣP ′Ω−1P

)
r̂ + τΣP ′Ω−1(Ω + P ′τΣP )(Ω + P ′τΣP )−1 (z− P r̂)

]
(12)

=
[
I + τΣP ′Ω−1P

]−1

· · · (13)[(
I + τΣP ′Ω−1P

)
r̂ +

(
I + τΣP ′Ω−1P

)
τΣP (Ω + P ′τΣP )−1 (z− P r̂)

]
(14)

After some simple algebra we obtain a modified form of the equation with unified τ and Ω

variables:

=z + τΣP (Ω + P ′τΣP )−1 (z− P r̂) (15)

z∗ =z + ΣP
[Ω

τ
+ P ′τΣP

]−1

(z− P r̂) (16)

Given that we hold absolute views on all assets at all times we can further simplify by

dropping out P , which is the identity matrix assigning views to the respective asset where

one does not hold a prediction on each asset or states relative views:

z∗ =z + Σ
[Ω

τ
+ τΣ

]−1

(z− r̂) (17)
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A.3 In- and Out-of- sample statistics of BDI
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Figure 4: In-sample statistics are depicted as time series averages across indices as well as cross sectional
averages against time. BDI coefficients and adjusted R2 measures against time are composed of 22 indices
for the first 32 observations and all 37 indices for the subsequent 105 observations. This causes a remote
structural brake in the upper row figures. Numbering of indices is according to the listing in tables in
appendices ?? and 2.
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Figure 5: Out-of-sample estimation results are are depicted as time series averages across indices as well
as cross sectional averages against time. Out-of-sample R2 statistics are sorted into two groups according to
available number of observations. Dotted lines represent one sigma band deviations across indices. Note the
different scaling of the y-axis for figure in the upper row. Numbering of indices is according to the listing in
tables in appendices ?? and 2.
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A.4 Statistical Properties of Estimations

Furthermore, we also make use of a common measure from the field of asset management.

We calculate hit ratios to observe whether forecast match the direction of future market

movements. This basic measure reveals a lot. Most investment managers reduce their expo-

sure radically when expecting negative real returns, on the other hand the increase in asset

value is less relevant. Although different definitions circulate in literature, we determine hits

and hit ratios as follows (see Amenc, El Bied, and Martellini (2003) or Hyup Roh (2007)):

HR =
1

T

T∑
t=1

ht, where ht =

{
1 if sgn(rt) = sgn(r̂t)

0 if sgn(rt) 6= sgn(r̂t)
(18)

Consequently, we compare signs of real and estimated returns at every time t. Whenever

the signs match the function takes the value 1, else 0. To obtain the final hit ratio we

calculate an arithmetic average across all hits ht. Simple ’hits’ gain further relevance when

verifying the relationship between in-sample estimations and out-of-sample forecasts.

To underline the statistical relationship between in-sample estimation measures and out-

of-sample predictability we use a logistic (logit) econometric model, similarly to Leung,

Daouk, and Chen (2000). A binary choice model is necessary due to the selected dependent

variable for this estimation. Hereby we investigate the relationship from a classical asset

management perspective as we are solely interested in whether higher R2 values consequently

result in higher hit ratios, regardless of total deviation. In case of single factor and other

non-sophisticated forecast models this is especially meaningful as squared deviations from

real returns are commonly large. Therefore we calculate ’hits’ for every month and regress

changes of R2 on it. Changes are necessary as consecutive values of R2 exhibit a clear trend

and heteroscedasticity, hence it violates the assumption of stationarity. By generating ∆R2

we overcome this issue, although we devote an initial observation.

ln

(
plogiti,t

1− plogiti,t

)
= γi + θi ·∆R2

i,t−1 + νi,t (19)

Left-hand side of Equation 19 is commonly referred to as log odds ratio, where the

probability of observing outcome 1 is pi,t = P{hi,t = 1|∆R2
i,t−1}. Thereupon, coefficients

of the logit model can be interpreted as effects on the log odds ratio. As such, we look for

positive outcomes for θ underlining that a positive change in our adjusted R2 estimations

increases the odds of a ’hit’ when predicting expected returns (Verbeek, 2004). Hence,

a higher R2 measure promises a better quality of our predictor. Note that we make use of

lagged changes of R2 in order to realize the correct dependency of future returns on in-sample

estimations. We compute this measure across all indices i and verify legitimate influence of

the related confidence. Positive coefficients of logit regressions consequently indicate that it

is proper to set the Ω matrix of the BL model according to the goodness of fit of in-sample

estimations.
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A.5 Overview on Baltic Dry Index

BDI prices are based on weighted averages of twenty global routes and not, as the name

might suggest, only on routes around the Baltic states. BDI originated from the Baltic

Freight Index (BFI), which was set up in May 1985 to provide a generally accepted base

index for freight derivatives. In November 1999 the BFI was replaced by the BDI, which is a

constitute representing the average price for the different vessel sizes: Baltic Exchange Cap-

Size Index (BCI), Baltic Exchange Panamax Index (BPI) and Baltic Exchange Handymax

Index (BHMI). Based on the change in construction of the BDI we test the time series for

structural breaks. With the help of the Chow test we separate the sample into two parts

– prior and after November 1999 – and regress index returns on lagged BDI growth rates

with an OLS procedure. We calculate F results by comparing the sum of squares (SSR) of

the restricted and unrestricted models: F = (SSRr−SSRur)/k
SSRur/(n−2k) , where k denotes number of

restricted regressors including the intercept and n the number of observation. As shown in

Table 2 we find little evidence for structural breaks and only in case of a small number of

indices are the F results significant.

The requirement by market participants for derivatives is obvious when considering the

volatility of this index, where prices are determined based on supply and demand. Supply

in this case is defined by the available vessels in the market, in other words the total amount

of aggregated tones transportable by available ships. On the other hand, demand is based

on the industry’s need for raw materials. As the production of a new vessel takes between

2-3 years, the supply side is rather inelastic and therefore the index is driven by changes in

demand (Stopford, 2009). This of course can also create a bias within the index. Sudden

increases in supply, due to a large order of vessels, will decrease the index value although

the demand has not actually reduced. Respectively, economic outlook is also not negative

as might be implied by the BDI. Given these shortcoming, the study by Bakshi et al. (2011)

analyses whether the index really is a reliable indicator for future economic activity, as well

as for commodity and asset prices.

The economic relevance of the BDI is based on the fact that a positive outlook on behalf

of the companies increases their demand for raw materials, which subsequently increases the

prices for shipping dry bulk. Therefore, the shipping of raw materials today is related to

future industrial output. The factors affecting shipping prices can be summarized as follows:

(1) Commodity/raw material demand, (2) Fleet supply, (3) Seasonal Pressures, (4) Bunker

prices, (5) Choke points, (6) Market sentiment, (7) Port congestion, (8) Labour relations,

(9) Piracy and (10) New arctic shipping routes (Tsolakis, 2005; Stopford, 2009). As we

can see the number of factors impacting the index is significant and drives volatility of the

index. Besides, this index is free of speculation, as one does not book freights unless one has

actually got something to ship.
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A.6 Literature review

References for this paper are gathered from two major fields. First we take a look at the

Black-Litterman model and secondly we introduce contributions related to the Baltic Dry

Index.

The BL approach was developed by Black and Litterman (1991) and attempts to im-

prove the applicability of quantitative portfolio optimization in practice. Main constraints

of Markowitz are agreed to be the extreme portfolio allocation (Black and Litterman (1992),

Green and Hollifield (1992) and Basak and Chabakauri (2010)), sensitivity of portfolio

weights (Best & Grauer, 1991), information aggregation (Merton, 1980) and estimation errors

of input variables (Michaud (1989) and Chopra and Ziemba (1993)). Especially the reduc-

tion of estimation errors has played a significant role and many sophisticated models have

been developed to reduce these misspecifications (Bawa, Brown, and Klein (1979), Horst, de

Roon, and Werker (2006), Kan and Zhou (2007) and Garlappi, Uppal, and Wang (2007)).

The BL approach aims to overcome the majority of these short-comings and in addition

allows the user to incorporate personal views on the basis of Bayesian inference. Meanwhile

numerous studies have evaluated the BL model, including Bevan and Winkelmann (1998),

He and Litterman (1999), Satchell and Scowcroft (2000), Drobetz (2001), Christodoulakis

(2002), Idzorek (2002) and most recently Schöttle, Werner, and Zagst (2010). Additional

studies have been concerned with a clear specification of the required input parameters.

Giacometti, Bertocchi, Rachev, and Fabozzi (2007) improve the classical BL model by con-

sidering different distributions (normal-, student- and stable distributions) to describe asset

returns and evaluate the results by means of more sophisticated risk measures. Furthermore,

Palomba (2008) implements a multivariate GARCH model into the BL approach in order

to reflect the changes in volatility of asset returns and can thereby significantly improve the

model’s asset allocation. Further studies concerned with the application of the BL model

include those by Braga and Natale (2007), Jones, Lim, and Zangari (2007), Martellini and

Ziemann (2007), Da Silva et al. (2009), Mishra, Pisipati, and Vyas (2011).

Literature on the Baltic Dry Index is limited. Some studies have been published during

the last two years, where one strand is focusing on the determination mechanisms and the

second strand is analyzing the index’s dynamic properties (Ko, 2011). The study by Chung

and Ha (2010b) analyses the impact of the financial crisis on the BDI by applying a Kalman

filter to identify possible structural changes in the index during the period April 2007 to

August 2008. The results show that there have been three structural breaks related to the

beginning of the subprime mortgage crisis, the collapse of Lehman Brothers and the period of

lowest equity prices in the US. A subsequent study by Chung and Ha (2010a) identifies a co-

integration relationship between explanatory variables such as US equity returns, Eurodollar

interest rate and the iron import of China. Their results have further been confirmed by

Beverelli (2010) confirming the dependency of freight rates on the oil price and iron ore. Ko

(2010) evaluates the relationship between demand, supply and freight rates by applying a

recursive VAR model and could thereby identify a statistically significant negative correlation

between ship capacity and BDI, as well as a positive relationship between transport demand

and BDI. Furthermore, Chen, Meersman, and Voorde (2010) analyze the relationship of

daily returns and volatilities of BDI constitutes. Their findings are inline with Xu, Yip, and

Marlow (2011) and imply that the impact on the BDI is not constant over time but can be

driven by different underlying indices at different times.

Based on the high volatility observable for the Baltic Dry Index and the partial depen-

dency on macroeconomic variables, Bakshi et al. (2011) have been the first to conduct an

in-depth analysis on the predictability of international equity indices by means of the BDI
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growth rate. The fact that freight rates are determined before industrial output gives rise

to the idea that the BDI acts as an indicator for economic growth. Furthermore, the fact

that equity markets are also an indicator for the real economy and therefore predetermined,

motivated Bakshi et al. (2011) to see if the BDI has also got predictive power with regard

to equity markets. Their investigation yields significant results for the predictive power of

the BDI regarding international equity index returns, commodity index returns and global

economic activity. Finally, they have applied the BDI as an indicator for the equity market

within a simple Markowitz portfolio strategy and stated Sharpe ratios above a benchmark.

Based on their findings this study incorporates the 3-month BDI growth rate into the Black-

Litterman model, while also introducing a procedure to determine an optimal confidence

matrix for estimating portfolio weights.
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